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Abstract

Many efficient analytic and numeric approaches exist to study and verify
formal descriptions of probabilistic systems. Probabilistic model checking is a
prominent example, which can handle several modelling formalisms through
various study angles and degrees of detail. However its core resolution
algorithms depend on the memoryless property, meaning only Markovian
models can be studied, with few limited exceptions. Furthermore the state-
space of the model needs to fit in the physical memory of the computer.

Discrete-event Monte Carlo simulation provides an alternative for the
generality of automata-based stochastic processes. The term statistical model
checking has been coined to signify the application of simulation in a model
checking environment, where systems are formally described and properties
written in some temporal logic (LTL, CSL, PCTL∗, etc.) are answered within
the confidence criteria requested by the user.

Such simulation approaches can however fail yielding no answer to the
query. This typically happens when statistic analysis of the paths generated
shows the data available is insufficient to meet the requested confidence
criteria, and then more simulation is needed. When the value to estimate
depends on the occurrence of rare events, viz. events which are seldom
observed in the normal operation of the system, the situation degenerates to
infeasible requirements, e.g. two months of standard Monte Carlo simulation
may be needed to provide the desired 90% confidence interval.

Specialised simulation strategies exist to combat this problem, which lower
the variance of the estimator and hence reduce simulation time. Importance
splitting is one such technique, which requires a guiding function to steer
the generation of paths towards the rare event. This importance function is
typically given in an ad hoc fashion by an expert in the field of the model
under study. An inadequate choice may lead to inefficient simulation and
long computation times.

This thesis presents automatic approaches to derive the importance
function, based on a formal description of the model and of the property to
estimate. Since the basis of estimations is discrete event simulation, general
stochastic processes can be covered with these approaches. The modelling
formalism is Input/Output Stochastic Automata (IOSA, [DLM16]) and both
transient and steady-state (probabilistic) properties involving rare events
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can be estimated. Since IOSA is a modular formalism, the efficiency of two
different techniques has been studied: deriving the importance function from
the fully composed model, and deriving it locally in the individual system
modules. The latter option alleviates some memory issues but requires
composing the locally generated functions into a global importance function,
which provided another subject of research also included in this thesis.

Prototypical yet extensible tools have been implemented to test the
feasibility and efficiency of these automatic techniques which face the rare
event simulation problem. Some insight into their implementation and the
results of experimentation are presented in the thesis.
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Introduction 1
It is deeply rooted in human nature, providing such a thing exists, to study
and modify our environment in an attempt to minimise threats and increase
our chances of survival and comfort. In an ever increasingly technological
and electronic society, these attempts materialise in the development of infor-
mation storage and computation systems. These computer-based processes
and tools can become extremely complex, and since our well-being depends
on them, they are under continuous human and automated revision to ensure
their proper functioning.

Examples of such undertakings are ubiquitous: from regular mechanical
checks in trains, or verifications performed in a newly written piece of code,
all the way up to the highly structured protocols involved in every assembly
phase of a spacecraft.

In spite of these efforts, the inextricable foundations of reality make it
impossible to completely avoid accidents. Either by human error or machinery
malfunction, the 22nd of February 2012 “la tragedia de Once” (the Once—a
train station’s nickname—Tragedy) took the life of more than fifty people, in
the worst Argentinian train mishap of the last thirty years.

Undesired outcomes are also observed in processes isolated from a hostile
natural environment. Consider Heartbleed, the security bug in the OpenSSL
cryptography library, used worldwide to secure the most important value of
western civilization: private capital. The source code was a peer-reviewed
implementation of a standardised protocol, yet it contained a flaw which could
infringe the user’s privacy by allowing a buffer over-read. This vulnerability
was subject to massive broadcast, and the Codenomicon company provided
the bug with a logo of its own—see Figure 1.1.

Even in highly protocolarised production chains do these bugs find a
crack to hide in, coming out to cause mayhem in obnoxious ways. Space
shuttle programs are famous for the thoroughness of their security checks and
controlled procedures. Be that as it may, the Space Shuttle Columbia disaster
destroyed seven lives and millions of dollars of investment and research, in

https://en.wikipedia.org/wiki/2012_Buenos_Aires_rail_disaster
https://en.wikipedia.org/wiki/Heartbleed
http://www.codenomicon.com/
https://en.wikipedia.org/wiki/Space_Shuttle_Columbia_disaster


2 INTRODUCTION

an accident that slipped the mind of technicians and engineers at NASA.

Figure 1.1: Heartbleed logo†

There is no denying the limits of human
revision. Inspections can be carried out, proto-
cols followed, code reviewed; but the subjective
factor, that unmeasurable injector of failures,
will be present as long as humans are involved
in the process. That is why formal guarantees
have gained in popularity for the last quarter
of a century [CW96]. From the rigorousness of
logic and mathematics, developing techniques
to ensure that a model of our system satisfies
certain vital properties, is not only beneficial
but also increasingly necessary in the modern
world. Two from the three incidents mentioned
took place less than six years ago, accounting
for the currency of the claim.

Model checking is a prominent example of one such technique; it is a
verification procedure based on an exhaustive exploration of the state space
of a model of the system [CES86,BK08,Har15]. The user provides such model
and a formalisation of the property to be verified, and model checking replies
whether the property holds (typically qualitative queries), and in certain
scenarios it can measure to which extent does it hold (quantitative queries).

Nevertheless, the results of such formal proofs are only valid for the
models where they were proved or verified. Thus the more realistic the
model, the more useful the result. This has led from the initial discrete
and deterministic settings of process algebra and transition systems, to the
inclusion of nondeterministic behaviour, discrete probabilities, continuous
time, and even (continuous) stochastic behaviour.

The price to pay for such complexities are more involved verification
techniques and an ever increasing state space, whose storage in physical
computer memory easily becomes infeasible. Focusing primarily on the
dimension of the state space, several reduction procedures are currently known
to work on a smaller abstraction of the original model description. Examples
of such techniques include program slicing [Wei84], partial order reduction
[Val90], confluence reduction [BvdP02], and several refinements of these as well
as other strategies [Bry86,CFM+93,dAKN+00,DJJL02,DN04,BGC04]. Many
involve performing verifications on a reduced model related to the original

† By Leena Snidate / Codenomicon - http://heartbleed.com/heartbleed.svg



3

one by means of a bisimulation relation [Mil89]. Unfortunately and more often
than not, the theoretic hypotheses on which such techniques are founded
can be quite restrictive, e.g. describing stochastic behaviour solely with
memoryless probability density functions [BK08]. Another known issue that
several minimisation procedures suffer from is requiring access to the full
reachable state space [Har15], which results in alleviated verification times
but certainly does not solve the state dimension problem.

There is a different approach, popularly known as statistical model check-
ing [YS02,LDB10], which can operate without such problematic exploration
of the full state space. This technique, quite distinct from the previously
mentioned standard model checking, is based on the randomised production
of system (model) executions. Each execution produced is interpreted as a
new, independent sample of the behaviour of the system, stored to augment a
random sample. This random sample is then statistically analysed to provide
the user with a tentative answer to the query.

The nature of this answer is thus very different from the one produced by
standard model checking, which is certain (or at the very least it is certain
that it is not certain) of its final statement [BK08]. Instead, statistical model
checking yields an estimate of the answer, which the user can rely on with
certain measurable notion of confidence. Owing to its statistical origins, this
estimate is usually provided in the form of an interval, within which the
true value of the user’s property query is supposed to lie. Thus the user can
request tighter intervals to be produced with higher confidence, whenever a
more reliable answer to the query is desired [LDB10].

Since samples are produced and analysed on the fly, this approach does
not need to represent the full state space of the system model. Hence, the
issues related to having huge state spaces are avoided. Of course this does
not come for free, and is paid back with usually longer computation times,
related to the production of the system execution paths. It can happen that
a huge number of fresh samples provides little new information, and thus
estimations progress at a slow pace. This situation is exacerbated when the
property under study depends on the observation of a rare event, whose
occurrence is very unlikely in randomly produced paths. There is a whole
research field, known as rare event simulation ‡, whose specific aim is to
counter such detrimental scenarios [RT09b]. This will be the target field of
the thesis.

‡ Notice “simulation” here stands for the randomised generation of system execution paths;
it is not related to the previously mentioned notion of “bisimulation.”



4 INTRODUCTION

1.1 Motivations and goals

Two techniques stand out in the field of rare event simulation: importance
sampling and importance splitting. Importance sampling [GI89,Hei95,JS06]
fiddles with the stochastic behaviour of the system tractably, meaning that
the modifications applied to the original probability distributions can be
countered once an estimate is obtained, correcting any bias introduced. This
way the chances of observing the rare event in randomly generated paths are
increased, and estimations progress at a more reasonable pace. Importance
splitting [KH51, Bay70, VAVA91] leaves the original model untouched and
pursues a different goal, cloning promising simulations (e.g. execution paths)
which are likely to produce a rare event, and truncating those which go astray.
Therefore most of the computing effort is spent producing samples rich on
information.

Each technique has its advantages and its drawbacks, and they comple-
ment each other in certain ways, as it is further discussed in Section 2.4.
However, the tractability of the change of measure required by importance
sampling [LMT09] is hard to perform in a systematic way. Even casting
automation aside and conforming ourselves with ad hoc approaches, most
known efforts are bent to the study of Markovian systems, due to the hard-
ships of coming up with an efficient and tractable change of measure. See e.g.
[GSH+92,LT11] and [LMT09]. This is at odds with the general motivations of
the thesis, which we describe next, ergo we will focus on importance splitting.

In most standard model checking procedures, the so called push-button
approach is one of the major appeals: once the model has been built and
the property queries specified, the user can obtain the desired answers in
a fully automatic way. We consider this a clear advantage of the method
over other formal techniques such as theorem proving. Therefore, we wish to
develop procedures which go as close as possible to such full automation.

However, standard model checking suffers from the infamous state explo-
sion problem, which forces implementers to apply reduction by bisimulation
and other such strategies. It is paramount to shrink the representation of
the model, forcing it to fit in the physical memory of a computer, in order to
apply the verification algorithms. We prefer to avoid this problem altogether,
resorting to model analysis by simulation (i.e. statistical model checking).

There is another advantage in choosing simulation over standard model
checking, related to the scope of model types covered by each approach. As a
rule, we want to be as general as possible. Earlier model checking algorithms
could only cope with Markovian systems, which is far too restrictive for our
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intentions. The situation has changed over the years, deriving in a multiple-
formalism, multiple-solution situation—see “The Modest Toolset” in [Har15].
Yet in contrast, if one leaves nondeterminism aside, the simulation approach
can be trivially extended to cope with any type of probabilistic, timed, or
(continuous) stochastic behaviour. That counts as a further motivation: our
�nal product should be easy to apply to as many models as possible.

Moreover, we are interested in the challenges posed by system analysis
under a rare event regime. This means path generation cannot be carried out
in the standard Monte Carlo fashion, lest the estimation procedures take too
long to converge to a reasonable result. In that respect we concern ourselves
with e�cient simulation techniques, more speci�cally with importance splitting,
because we believe it matches our interests best.

Summing up, the general motivations of the thesis involve the development
of automatic techniques for system (model) analysis, using simulation and
statistical analysis of execution paths. The systems modelled should be as
general as possible, but the properties studied must involve some rare event,
seldom observed when generating the paths. Also and more speci�cally, we
wish to focus our studies on perfecting the importance splitting technique,
harmonising it with these motivations.

The efficiency gain derived from the use of importance splitting lies in a
proper selection of the importance function [VAVA91,VAVA02,Gar00,LLGLT09].
This function decides which simulation paths are striving near the rare event
and which are deviating from it. Thus, overlooking some technical details,
we can think that choosing an efficient importance function is equivalent to
having a good implementation of importance splitting.

When approaching rare event simulation with importance splitting, it is
customary to have the user provide an ad hoc importance function, together
with the system model and property queries [VAVA91, CAB05, LLGLT09].
However and in view of the general motivations above, we would like to
automate the construction of such function, with no user intervention in the
process.

Besides it is noteworthy that several studies from the rare event literature,
most prominently those concerning importance sampling, formalise a measure
of the efficiency of their approach. Such studies are keen on developing opti-
mal or asymptotically efficient (also known as logarithmic efficiency [LMT09])
implementations of their methods [GSH+92,GHSZ98,KN99]. Generally speak-
ing it is helpful to count with rare event simulation mechanisms exhibiting
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such properties, since they are guaranteed to converge fast—or as fast as
possible—regardless of how rare this elusive event becomes.

Unfortunately, such studies adequate their endeavours to the specific
systems under study, coming out with strong hypotheses which rule out
generalisations. This is unavoidable when one desires to obtain such efficiency.
Optimality requires a formal proof that the variance of the estimator is
minimal in the given setting. Asymptotic (or logarithmic) efficiency requires
formal proof that such variance grows polynomially as the rarity of the event
grows exponentially—see Section 2.4. Hence these results must be moulded to
fit the specific system under study, which goes against the general motivations
mentioned above.

In view of the last remarks we list the specific goals sought in this thesis:

• developing algorithms to build the importance function used by the
importance splitting technique,

� these algorithms should take as input the same data provided to
perform standard model analysis by simulation;

• embedding this function in a procedure, automated to the push-button
extent, which implements importance splitting;

• building a software tool which implements this automatic procedure;

• giving empirical proof of the efficiency of our approach,

� our implementation intends to be more efficient than the standard
Monte Carlo approach,

� neither optimality nor asymptotic efficiency are sought,
� when feasible, results should be validated against verified data,
� experimentation should be carried out in diverse models, including

non-Markovian systems.

1.2 Related work

We are aware of a number of studies in roughly the same direction than
ours. First and foremost [JLS13] share several of our general motivations.
They also propose to derive the importance function, called score function
in [JLS13,JLST15], from the same user input that statistical model checking



1.2 Related work 7

requires. They focus on the property query, which needs to be restated in
an equivalent “layered” way. Thus the importance value (score) of a system
state is related to the number of layers of the property that it satisfies.

This idea pays little or no attention to the specific system under study
when deriving the score function. We believe that the structure of the
model should also be taken into consideration when deriving such function.
Furthermore, if the property query does not support the layered restatement
[JLS13] propose, approximate heuristics must be used.

In [ZM12] and [RdBSH13] the modelling formalism is Stochastic Petri Nets
(SPN). Both works use the structure of the net to boost simulations in a rare
event regime; a comparison between them can be found in [ZRWCL16]. In
particular, [ZM12] derives a heuristic to measure (roughly) the distance of an
arbitrary marking from the markings that satisfy the property query. That
is used to derive an importance function, in an approach resembling the one
from Chapter 3 in this thesis.

However, certain decisions made by [ZM12] are reached through the use
of Linear Programming, applicable to a restricted class of SPN (the freely
related T-semiflows class, according to [ZRWCL16]). These decisions involve
key aspects like the selection of the splitting factor and the thresholds for the
application of RESTART (a particular importance splitting mechanism). As
mentioned in the general motivations, this thesis aims at a broader scope
of applicability. Otherwise, letting aside the use of SPN, the approach from
[ZM12, Sec. IV] has certain similarities with our proposal in Section 3.2.3.

[RdBSH13] study importance sampling rather than importance splitting,
although they claim that the distance function derived with their method
could also be used for importance splitting. They apply the approach from
Booth & Hendriks as reported in [LDT07], measuring the distance between
a marking and the rare event. This way they achieve a speedup in the
simulation of rare events without generating the entire state space.

The approach developed in [RdBSH13] is certainly elegant, but it relies on:
dealing with Markovian firing delays exclusively; parameterizing all transitions
intensities by some rarity parameter; and solving several Integer Linear
Programming instances (known to be an NP-complete problem). They do
not report simulation times in that work, even though they do in [ZRWCL16],
showing an effective application of their strategy. Still, in that same work
they report computation problems for larger model sizes. Besides they are
restricted to Markovian SPN, and a specific goal of this thesis is to consider
non-Markovian systems.

[Bar14] focuses on SPN and importance sampling as well. In other respects,
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many of his motivations and goals coincide with the ones from this thesis.
Restricting his studies to the Markovian world, Barbot’s Ph.D. thesis gives
formal proof of variance reduction in several distinct settings. Furthermore,
in the last part of [Bar14], Barbot exemplifies the efficiency of his proposal
empirically, running an importance sampling benchmark with a software tool
that implements his technique.

Last, we notice that these works (just like this thesis) are based on a
static analysis of the model and/or property query provided by the user.
Instead [GVOK02] assign importance to the states (i.e. build the importance
function) applying reversed simulation sequentially on all the states of the
system. This requires some knowledge on the stationary distribution of the
model, and the applicability of the approach is shown for finite discrete-time
Markov chains.

1.3 Contributions and outline of the thesis

Besides this introduction, the conclusions, and some final appendices, this
thesis is organised in three extensive chapters.

Chapter 2 covers the fundamental theoretic aspects required to follow
the thesis. The chapter is mostly self-contained, aside from some references
to the appendices. More precisely:

Sections 2.1 and 2.2 give an overview of several modelling formalisms and
temporal logics, used to query the properties exhibited by a system model.

Section 2.3 studies some known techniques to automate the verifications and
checks on such system models. Using the general motivations from Section 1.1
as our north, we pick our way through a variety of strategies and algorithms.
In doing so we identify the strengths and weaknesses of each technique w.r.t.
our application intentions.

Section 2.4 gives a formal introduction to the field of rare event simulation,
and motivates the choice of a stopping criterion for estimations, later used
during experimentation. This section justifies the transition from the general
scope of sections 2.1 to 2.3, to the more specific field of sections 2.5 to 2.7.

Sections 2.5 and 2.6 first introduce importance splitting formally, then show
a broad overview of available implementations, and finally focus on the
technique we will use later during experimentation.
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Section 2.7 probes the boundaries of importance splitting and identifies some
open problems in the field. Its final discussion links all the notions presented
along the chapter with some specific goals of the thesis.

Chapter 3 presents our first (monolithic) approach, from the original
ideas that motivated it, to the numerical results of the experimentation on
case studies taken from the literature. This is developed as follows:

Section 3.1 reflects on how critical the role of the importance function is, in
order to obtain a good implementation of importance splitting. Examples
are used to introduce the sensitive topics, which are then taken into account
in the following sections.

Section 3.2 presents our first algorithm, devised to fulfill the first specific
goal detailed in Section 1.1: deriving an importance function from other user
input. The application setting is stated formally and a proof of termination
for the algorithm is provided.

Section 3.3 develops a framework to implement an automatable importance
splitting application. This is carried out from a monolithic-model stand,
inherent to the algorithm presented in Section 3.2. Particularly Section 3.3.3
introduces the algorithm we use to select the thresholds required by the
splitting simulations. All this fulfills our second specific goal.

Sections 3.4 and 3.5move to the empirical realm, introducing the first software
tool implemented during the development of this thesis. The tool is used in
Section 3.5 to experiment on several Markovian case studies taken from the
literature. The results of these experiments served to validate the correct
functioning of the tool, and to give practical demonstration of the efficiency
of our approach. Thus the two last specific goals are fulfilled, though the
second one only partially (it would remain to experiment on non-Markovian
systems).

Section 3.6 concludes analysing certain limitations of the approach proposed
in this chapter. The most serious one is the need to generate the entire state
space of a fully composed model, inherent to the monolithic nature of the
approach. Though most of our goals are satisfactorily met by Chapter 3, the
issue mentioned is quite restrictive. This compelled us to strive for solutions,
which evolved into the research presented in Chapter 4.

Chapter 4 introduces a second (compositional) approach to automate
importance splitting, attempting to solve or at least mitigate the issues
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incurred by the monolithic strategy used in Chapter 4. The main topics
covered in this chapter are organised as follows:

Section 4.1 explores the foundations of a compositional approach. It discusses
certain aspects to be covered when deriving an importance function of
distributed nature, stating two concrete challenges.

Sections 4.2 and 4.3 answer the challenges from Section 4.1, achieving the first
specific goal of Section 1.1 in this new setting, viz. deriving a compositional
importance function. More specifically, Section 4.2 shows how to decompose
the (global) property query in order to build importance functions local to
each system component. An algorithm is provided, which fits in the general
framework from Chapter 3. Then Section 4.3 presents several strategies to
re-compose the resulting set of local importance functions, in order to obtain
a global function to be used during simulations. Section 4.3 also features a
comparison between the monolithic approach from the previous chapter, and
the compositional approach from this one.

Section 4.4 presents a newly developed modelling formalism, named IOSA,
which drops completely the Markovian restrictions from the one employed
in Chapter 3. This formalism is the basis upon which all the practical
applications of Chapter 4 are built.

Section 4.5 casts the proposals and results from the previous sections into
an empirical setting. Namely, the IOSA formalism from Section 4.4 is given
a concrete syntax in Section 4.5.2, and Section 4.5.3 presents the second
software tool developed in this thesis. The second and third goals from
Section 1.1 are thus tackled in this section.

Section 4.6 provides empirical proof of the applicability and efficiency of the
compositional approach developed in this chapter. Since IOSA tolerates arbi-
trary stochastic distributions, some of the models studied are not Markovian,
achieving thus our final specific goal to its full extent.

Chapter 5 gives some final remarks on the general outcomes of this work,
and mentions possible continuations to improve on them and to extend the
applicability of our proposals.

Appendices A to C are addendums which contribute to the reproducibility
of our experiments, and which briefly review the more formal notions behind
some theories on which this thesis relies. Namely:
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Appendix A includes the code of all the system models used to produce
the numeric results presented. Two modelling languages are used: models
from Chapter 3 are expressed in the PRISM input language; models from
Chapter 4 are expressed in the IOSA model syntax.

Appendix B includes some elemental definitions and results from measure
theory, which are required to comprehend Appendix C and the more formal
aspects of Chapter 2.

Appendix C presents the basic notions of the NLMP formalism, which is used
as semantic basis for the IOSA formalism employed in Chapter 4.
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This chapter briefly covers the fundamentals required to follow the thesis.
Readers interested in a deeper understanding of the subjects here introduced
can find some excellent reading material in:

• Principles of Model Checking, by Christel Baier and Joost-Pieter Katoen,
[BK08], where several aspects of system modelling and verification are
explained on rock-solid mathematical and computational grounds;

• Rare Event Simulation using Monte Carlo Methods, edited by Gerardo
Rubino and Bruno Tuffin, [RT09b], a monograph on rare event simulation
(RES) result of a collaborative effort by chief contributors to the field;

• The splitting method in rare event simulation, Marnix Garvels’ Ph.D.
thesis, [Gar00], featuring an in-depth analysis on the application of impor-
tance splitting techniques to solve the RES problem.

It is recommended to at least skim through this chapter, even when the
reader feels a strong confidence in the subjects it introduces. The intention is
not only to present the necessary theoretical background, but also to review
the concepts and open problems that motivated the thesis. This is exposed in
a way that gradually converges from the generality of formal modelling and
verification, to the derivation of importance functions for applying multilevel
splitting to the rare event simulation problem.

2.1 System modelling

There is an approach to study and understand the systems we devise, which
has the appealing benefit of (partial) automatization and which provides
guarantees of the results it yields: formal modelling and verification. To
engage in this approach the core functionality of the system needs to be
interpreted and described in terms of some formal language, which comprises
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standby
vend_Poke

vend_Cepsi

Figure 2.1: Soda vending machine (pirate version)

the non-automatable phase. Such abstraction task is by no means trivial, one
of whose many difficulties lies in the choice of the relevant components and
behaviour which are to be included in the abstraction. However the rewards
compensate the effort: once the formal model is finished many studies can be
carried out at the push of a button. It is worth mentioning some approaches
do exist to automatically extract a model from some formal description of
the system, like its source code, providing of course such description exists.

Several computation and modelling formalisms have been developed to
express the many aspects in which a system can be described and analysed,
which vary according to the study angle. Many of them take an automata-
based approach, where the concept of state describes a “present situation of
things” which evolves following some formally specified and thus unambiguous
dynamics†. So from the current state s the automaton of the system can
move to a next state s′ following some transition function (or relation), which
is typically denoted s→ s′.

In this state-based approach nondeterminism arises from the use of
abstraction, e.g. when the system can be influenced by an unspecified envi-
ronment, or several components run parallelly and only the global behaviour
is of interest. Consider for instance a soda vending machine where the cus-
tomer can request a Cepsi or a Poke. To simplify matters assume Gottfrid
Svartholm and crew hacked the circuits so no payment is needed; the soda is
obtained by pushing a button. In a model which abstracts away from the
customer and considers the machine alone, there is no way to foretell which
beverage will be chosen. So from a standby state there is a nondeterminis-
tic choice between a next vend_Cepsi state and a next vend_Poke state. A
graphical depiction of this process is shown in Figure 2.1.

Just like in this toy example, nondeterminism can be described as a choice
of the next state among a set of possibilities, viz. the transitions enabled on

† As stateless alternative see e.g. λ-calculus [Bar84] and the Haskell language.

https://thepiratebay.org/
https://thepiratebay.org/
https://en.wikipedia.org/wiki/Lambda_calculus
https://wiki.haskell.org/Introduction
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each state are provided without any further information. Transition systems
with labels is one of the most widespread formalism whose core purpose is to
describe nondeterministic choices of the transitions between states.

Definition 1 (LTS). A finite Labelled Transition System (LTS) is a tuple
(S, s0, A,→, AP,Lab) where:

• S 6= ∅ is a finite set of states;

• s0 ∈ S is the initial state of the system;

• A is a finite set of actions or labels;

• →⊆ S ×A× S is the transition relation;

• AP 6= ∅ is a a set of atomic propositions;

• Lab : S → 2AP is a labelling function.

Having a single initial state and finite S and A sets suffices for the scope
of this thesis, although Labelled Transition Systems can be defined in more
general terms. See [BK08, Sec. 2.1] for a more complete introduction to these
kinds of structures.

In Definition 1 the system transitions are defined by means of the →
relation. Element (s, a, s′) ∈→ is denoted s

a−→ s′. When such transition
exists it is said that s′ is a successor of s, and s is a predecessor of s′. Notice
the labelling function Lab has domain on the states and is independent of
the actions A. It relates a set Lab(s) ⊆ AP of atomic propositions to state
s ∈ S, which stands for the properties the state satisfies.

Figure 2.2 shows the soda vending machine modelled as an LTS. Each
transition is decorated with an action, and for AP = {p, c, vend, idle}
each state was labelled according to the properties it should satisfy. For
instance transition vend_Poke reset−−−→ standby indicates standby is a successor
of vend_Poke, and the placement of atomic proposition idle says the machine
is idle only when standby is the current state of the LTS model.

The actions set A is provided without an ordering or any other information
besides the set itself. In the vending machine example this means that when
standby is the current state, there is no information a priori to indicate
whether the system should evolve following the choose_P or the choose_C
transition: the choice is nondeterministic. A closely related concept is
probability. Depending on whether the underlying state space is discrete or
continuous, the term probabilistic choice or stochastic choice is respectively
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standby

idle vend_Poke

vend, p

vend_Cepsi

vend, c

choose_P

choose_C

reset

reset

Figure 2.2: LTS of the soda vending machine

used to signify some quantification is provided for the transitions between
states.

Probabilistic and stochastic behaviour can be naturally found in myriads
of real-life situations, from the queueing in supermarkets to cloud formation
and the failure and replacement of components in a cloud storage facility.
In the discrete case, probability mass functions quantify the choice of the
next state. For instance, if the successor states of s are s1, s2, s3 with
probability 1⁄2, 1⁄4, 1⁄4 respectively, then observing 1 � N < ∞ transitions
from state s should result in, roughly, N⁄2, N⁄4, N⁄4 choices of state s1, s2, and
s3 respectively. If we make deadlocks out of states {s1, s2, s3}, i.e. add (only)
the deterministic transitions s1 → s1, s2 → s2, and s3 → s3, these quantified
transitions can be represented with the following transition matrix:

s s1 s2 s3

s 0 1/2 1/4 1/4
s1 0 1 0 0
s2 0 0 1 0
s3 0 0 0 1.

Here rows indicate the starting state of a transition, columns are the des-
tination state, and the matrix elements are the probability of taking that
transition. For instance, the probability of going from state s1 (second row)
to state s3 (fourth column) is the matrix entry at (2, 4), i.e. 0.

Markov chains are a well-known mathematical description of probabilistic
behaviour. When the discrete notion of step rather than continuous time is
inherent to the process evolution, the discrete-time variant of Markov chains
can be used to model the system.
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Definition 2 (DTMC). A finite discrete time Markov chain (DTMC) is a tuple
(S, s0,P, AP,Lab) where:

• S, s0, AP , and Lab are like in Definition 1 of LTS;
• P : S × S → [0, 1] is the transition probability function

which for all s ∈ S satisfies ∑s′∈S P(s, s′) = 1.

System transitions are thus defined by means of P, which is a formalisation
of the transition matrix illustrated above. The value P(s, s′) ∈ [0, 1] specifies
for each state s ∈ S the probability of taking the transition s → s′. Such
transition is said to exist iff P(s, s′) > 0, in which case s′ is a successor of s
and s is a predecessor of s′, very much like in the LTS case. The constraint
imposed on P ensures that each P(s, ·) : S → [0, 1] is a probability measure on
S, see Appendix B. For a more profound study of DTMC see e.g. [Nor98,BK08].

To provide a concrete example consider a point-to-point socket connection
through the Internet, with data-packets sent from one end and either lost or
received at the other end. To study the proportion of successful transactions,
the amount of packets sent and how many were received (rather than the time
point at which this took place) provides all relevant information. Since the
system evolves stepwise, where each step comprises either sending, receiving,
or losing a packet, a Definition 2 can model the desired behaviour.

In a typical DTMC implementation the transition probability matrix is
built, which explicitly gives the probability of moving from any state to
the next at each step. This information suffices for systems where future
behaviour depends exclusively on the current state and not on the path that
led there. Furthermore the DTMC is assumed finite and time homogeneous,
e.g. when a state is visited a second time the outgoing probabilities will be
the same as they were the first time.

The matrix of transitions for states {s, s1, s2, s3} illustrated above is
precisely a transition probability matrix. Notice that models with N states
would need a N2 square matrix of rational numbers. Efficient abstract data
types exist to alleviate this necessity, such as sparse matrix representations
or multi-terminal binary decision diagrams (MTBDD, [CFM+93,BFG+97]).

In comparison to the discrete world treated so far, the stochastic scenario
is more involved because heed must be paid to measurability issues. Due to
the memoryless property and the ease of analysis it offers, systems where all
transitions are governed by the exponential distribution have been studied
thoroughly. The continuous-time variant of Markov chains is the traditional
choice to model these kind of systems.
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Definition 3 (CTMC). A finite continuous time Markov chain (CTMC) is a
tuple (S, s0,R, AP,Lab) where:

• S, s0, AP , and Lab are like in Definition 1 of LTS;

• R : S × S → R>0 is the transition rate function
which for all s ∈ S satisfies R(s, s) = 0.

In Definition 3 and as opposed to P, matrix R gives the exponential
rates of taking transitions between states. Having r = R(s, s′) means the
probability of taking transition s→ s′ within t time units is 1− e−rt. Notice
that r = 0 yields a null probability, so as before the transition s → s′ will
be said to exist iff the matrix entry R(s, s′) > 0, with the corresponding
definitions of predecessor an successor states. Also since the exponential
distribution is memoryless, only knowing the current system state is enough
to determine the future steps, just like for a DTMC.

Definition 3 allows multiple successor states, i.e. for any given state s ∈ S
there can be more than one other state s′ ∈ S s.t. R(s, s′) > 0. Such situations
are known as race conditions. All outgoing transitions are enabled, and the
first one to fire (according to a sampling of the corresponding exponential
distributions) will be the one taking place. A deeper study of continuous-time
Markov chains can be found in [Nor98,Bre68].

A classical CTMC example is the queueing e.g. at a supermarket cashier.
The state space S would be used to represent the number of clients in
the queue, whereas the rate at which new clients arrive and the cashier
performs the service is encoded in R. In a simple model this would result in
a tridiagonal transition rate matrix, with null main diagonal.

So far the notions of nondeterministic and probabilistic/stochastic system
evolution have been introduced. There is another key concept which naturally
arises in many situations, whose explicit representation may be required.
In fact this concept has already been mentioned though, until now, only
incidentally: time passage.

A DTMC encodes the notion of discrete time evolution, whereas a CTMC
deals, also implicitly, with continuous time. But what if the exact time point
of occurrence of events needs to be modelled? For instance the soda vending
machine may fall in a suspended state for 2 seconds after a Poke is chosen.

In general, consider systems in a continuous time setting where stochas-
tically sampled events occur, yet not necessarily following the exponential
distribution. A usual modelling solution is to associate a unique variable to
each distinct event, which can sample time according to the desired probability
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density function. Stochastic automata [DK05] follow this approach.

Definition 4 (SA). A finite Stochastic Automaton (SA) is a tuple
(S, s0, A, C,→, AP,Lab) where:

• S, s0, A, AP , and Lab are like in Definition 1 of LTS;
• C is a finite set of clocks such that each c ∈ C has an associated

continuous probability measure µC : R→ [0, 1] with support on R>0;
• →⊆ S × 2 C ×A× 2 C × S is the transition relation.

Clocks in SA explicitly mark the passage of time: each c ∈ C is assigned a
positive value stochastically sampled from its associated probability density
function µC , and decrease this value synchronously with the other clocks at
constant speed, satisfying the differential equation ċ = −1. When execution
starts from s0, initial values for all clocks are sampled from their respective
probability measures. Time can be considered to stop for a clock that has
reached the value zero.

Even though the underlying notion of time is continuous, and just like with
DTMC and CTMC, the succession of events in the execution of a stochastic
automaton is discrete. More specifically, their occurrence is controlled by the
expiration of the clocks. If the system is in state s and there is a transition
s C,a,C′−−−−→ s′ , action a ∈ A will be performed after all clocks in C have expired,
viz. reached zero. Then the system moves to state s′ sampling new values
for the clocks in C ′ according to their probability measures. The triggering
clocks of the transition are those in C, and the resetting clocks are those in C ′.
If C = ∅ or all triggering clocks have value zero when state s was reached,
the transition can take place instantaneously.

Figure 2.3 shows a representation of the soda vending machine as a
stochastic automaton. Clocks x1 and x2 have exponential probability density
functions, with rates λ1 and λ2 respectively. Clock z instead samples its values
from a continuous uniform probability measure with support in [1.95, 2.05].
Notice the state space is the same as in the LTS representation of Figure 2.2,
but the nondeterministic choice of the transitions outgoing state standby was
replaced with a stochastic one, by the inclusion of the triggering clocks x1
and x2. Notice also the machine is suspended vend-ing for roughly 2 time
units when a Poke is chosen, which was modelled in the transition going from
vend_Poke to standby by using z as a triggering clock.

We highlight SA include nondeterministic behaviour, unlike DTMC and
CTMC. That is clear from the definition of the transition relation →: from
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Figure 2.3: SA of the soda vending machine

any state s there can be several transitions with the same triggering clocks
C, resetting clocks C ′, and action label a, reaching different target states s′.
In later chapters a restricted version of Definition 4 will be introduced, which
rules out nondeterminism by construction. Namely, by imposing restrictions
in the nature of relation →, only stochastic behaviour can be expressed.

The formalisms and examples presented so far were chosen as simple
as possible with the intention of introducing the fundamental concepts of
nondeterminism, probability/stochasticity, and time evolution, in a manner
directly applicable to the needs of this thesis. One could however be interested
in modelling more general systems, where time elapses at different speeds
for some components, or probabilistic and nondeterministic behaviour are
intertwined in a discrete setting.

Many more formalisms exist to satisfy each particular need. For instance
Markov Decision Processes (MDP, [Bel57]) mix the nondeterminism from LTS
with the probabilistic transitions of DTMC, and Stochastic Hybrid Automata
(SHA, [FHH+11]) allow the description of non-homogeneous time passage.
The interested reader is referred to [HHHK13, Table 3] for a broader overview
of the options available in the literature. Furthermore the lattice presented
in [Har15, Figure 1.2] summarises the relationships between several modelling
formalisms, in terms of the behavioural concepts they can express.

2.2 Model property queries

The intricate task of distilling a model from a real system is not done for the
mere pleasure of it, but to gain some insight and study the properties the
(model of the) system exhibits. Ensuring all desired requirements are met
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is usually the main intention. It may also be possible to obtain some useful
performance measurements from the model. All this is attained by querying
the model.

Coarsely one can speak of qualitative vs. quantitative queries: qualitative
(or functional) queries deal with absolutes such as termination or functional
correctness; quantitative queries are used to study performance and efficiency
aspects such as power consumption or time to termination.

Consider an ICE train service between Hamburg Hbf † and Köln Hbf, with
a single intermediate stop at Hannover Hbf. In this example qualitative ques-
tions are “ could the train be overcrowded, having to leave some passengers
at Hamburg Hbf? ” and “ does a departing train always reach destination? ”
Quantitative questions are “what is the average amount of passengers in a
train trip? ”, “ how likely is it for an incautious commuter to find a full train
at Hannover Hbf station and lose the trip? ” and “ do more than 99% of
trains trips reach destination safely? ”

Just like systems can be specified in some formal language, so do properties.
Logics are developed to describe the desired properties using propositions
produced by their grammar. Temporal logics are a usual choice due to their
expressiveness regarding execution paths: they produce succinct descriptions
of possible executions of the system, i.e. of the possible successions of states
the formal model allows (henceforth paths). Notice paths need not be finite.

Using propositions derived from the grammar of a temporal logic, concepts
relevant for real-life systems like reachability (“is this situation feasible?”),
safety (“something—bad—never happens”), and liveness (“something—good—
will always eventually happen”), can be compactly and clearly stated.

Many alternatives are available when searching for the proper logic, the
best choice depending on the behaviour to describe. Popular options are
listed and commented on next. No formal definition of their syntax nor their
semantics is provided; instead, to give a hint of how these logics talk about
system execution, a few minimal examples are presented in each case.

Linear Temporal Logic (LTL, [Pnu77]) allows reasoning about a single
time line, viz. no transitions branching is considered and thus there is a
single successor to each state in a path. LTL offers the disjunction (∨) and
negation (¬) propositional logic operators, and the next (◦) and until (U)
temporal modal operators. The usual propositional operators can be derived
from {∨,¬}; some relevant derived temporal modal operators are eventually
(�), and always (2).

† Hauptbahnhof, aka main train station.
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LTL formulae have semantics in the system paths, and for Definitions 1
to 4 they describe these paths by referring to the atomic propositions they
will visit. In a nutshell, ◦ talks about “the (single) next state of this path,”
� means “some state further ahead in the path” (viz. in the future), 2 means
“all future states including the current one,” and U says “something happens
in all states of the path until something else finally happens.” Some simple
LTL formulae are:

• ◦vend “ next thing to happen is a customer choosing a beverage, ” so
in the LTS of the vending machine from Figure 2.2, this formula is true
on any state of a path located one transition away from a vend-labelled
state, which is satisfied only by standby;

• � (vend∧p) “ eventually a Poke will be chosen, ” true when some
state ahead in the path is labelled with both vend and p (i.e. when
vend_Poke is reachable);

• 2¬overcrowd “ the train is currently not overcrowded and it will
never be, ” so in the ICE train case this query is satisfied by states in
paths ahead of which no overcrowd-labelled states are visited;

• ¬overcrowd U köln “ the train will not be overcrowded until it
finally arrives at Köln Hbf, ” where the eventual arrival at Köln is
necessary to satisfy the property.

Computational Tree Logic (CTL, [CE81]) considers a branching time
scenario, where there are many possible successors to every state and all of
these are to be quantified upon. In contrast to LTL this demands a state-
based semantics, since all paths (instead of a single one) rooted in the current
state are considered. Besides the propositional and temporal operators from
LTL, CTL offers the for all paths (∀) and for some path (∃) operators. The
first is satisfied if all paths originating from the current state satisfy the rest
of the formula (which must start with a temporal operator: ◦, U, . . . ); the
second is satisfied if some path satisfies the rest of the formula. The following
are CTL formulae:

• ∃�vend “ there is a system execution starting at the current state,
where eventually a customer will choose some beverage, ” which is a
tautology easy to verify;

• ∀� (vend∧p) “ all system executions from the current state will
eventually see a customer choosing a Poke, ” which is false in standby



22 BACKGROUND

since there is a (strange but valid) path where only Cepsis are chosen:

standby choose_C−−−−−→ vend_Cepsi reset−−−→ standby choose_C−−−−−→ · · · . (1)

It is worth mentioning that even though LTL and CTL formulae can
sometimes be encoded in terms of each other, in general the expressiveness of
these logics is incomparable [BK08, Theo. 6.21]. For instance the CTL formula
∀�∀2 a cannot be expressed in LTL, whereas the LTL formula �2 a cannot
be expressed in CTL.

Probabilistic Computational Tree Logic (PCTL, [HJ94]) considers also the
probabilistic nature of the Markov chains it was designed to study. Whereas
LTL and CTL talk about which states to visit and which not, PCTL allows the
user to express the probability of following certain path. This logic is based
on CTL with a major difference: the existential and universal quantifiers
are replaced with a probabilistic operator (P), of which ∀ and ∃ could be
considered special cases (even though that is not strictly true). The formula
PI(φ), where I is a rational-bounded interval of [0,1] and φ is a path, asks
whether the probability of executing φ is within I:

• P>0.9(¬overcrowd U hannover) “ the probability of having the ICE
train overcrowded in the first trajectory Hamburg–Hannover is below
10%, ” providing the train does effectively reach Hannover;

• P60.25(�overcrowd) “ at most one train from every four can get
overcrowded, ” which applies to any stage of the train trip;

• P>0(2 ( idle∨p )) “ there is a chance of choosing only Pokes ”;

• P=1(� (vend∧p)) “ eventually a Poke is chosen, almost for sure. ”

Remarkably, the last example is not equivalent to formula ∀� (vend∧ p)
from CTL. There may be paths with zero probability (see Appendix B)
where � (vend∧p) is false, which are disregarded by P=1 in PCTL but not
by ∀ in CTL—one such path was given in eq. (1). So ∀� (vend∧ p) is false
in the LTS model from Figure 2.2. On the other hand, in the SA model of
Figure 2.3 where probabilities come into play, P=1(� (vend∧p)) evaluates
to true, since the probability of choosing paths like in eq. (1) is zero.

Something similar happens between the CTL formula ∃2 (vend∧ p) and
its probabilistic counterpart P>0(2 (vend∧ p). In general the expressiveness
of CTL and PCTL are incomparable [BK08, Lemmas 10.44 and 10.45].
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Continuous Stochastic Logic (CSL, [BKH99]) is yet another branching-time
temporal logic specifically designed for CTMC analysis. It is based on CTL
and similar to PCTL, with the additions of a time bounded version of the
until temporal operator (U6t), also extended to its derivatives (e.g. �6t),
and an operator to reason about the steady-state probabilities of the system
(S). The bounded versions of the temporal operators limit the time horizon
to consider, so �6t means sometime within t time units. The S operator
considers instead an infinite time horizon, talking about probabilities of paths
in a system in equilibrium. The following are CSL formulae:

• P>1(¬overcrowd U6111 köln) “ (almost surely) the train will arrive
at Köln within 111 time units, and it will not become overcrowded
during the whole trip ”;

• P[.5,.6](�6 3
2 (vend∧ p)) “within one and a half time units, the proba-

bility of a customer choosing a Poke is between 50% and 60%”;

• S>0.9(2<60 ¬overcrowd ) “ during a normal working day (aka in
equilibrium) and with at least 90% probability, the ICE train will never
become overcrowded in the first 60 time units. ”

So far only Boolean-valued formulae have been considered: even in
quantitative queries like P60.25(�overcrowd) the answer is either “yes” or
“no” for a given path φ. The performance itself can also be the query, e.g.
“what is the probability of this happening?” during the execution of φ, rather
than the requirement “is such probability lower than certain value?.”

In general quantitative questions like these, which request the actual
value of an efficiency measure, are omitted in temporal logics. The problem
is that the nesting of numeric-valued answers is hard to grasp in a consistent
manner. Several tools however offer the user the possibility to perform such
queries at the top level of their formulae, of which the operators P=? and
S=? in PRISM are modern examples [KNP07, Sec. 5.1].

2.3 Analysis of the model

Once the system model and queries have been formally specified, automatic
algorithms can be run to check whether the model satisfies the requirements
or to find out the performance of (the formalisation of) the system. There is
more than one way of doing this; a few popular techniques are introduced
next, explaining in greater depth the one relevant for this thesis.
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2.3.1 Overview and known approaches

When thinking of automatic formal verifications, automated theorem proving
(ATP, aka automatic deduction) may be the first method to come to mind.
It comprises using computer programs to show that some statement (the
conjecture) is a logical consequence of a set of statements (the axioms and
hypotheses). This of course requires an appropriate formulation of the problem
as axioms, hypotheses, and a conjecture.

ATP is a broad term mostly associated to proof assistants. A proof
assistant is a software tool which helps developing formal mathematical
proofs by means of human-machine collaboration. This technique is not
completely automatable and in any case falls outside the scope of this thesis.
Curious readers are referred to e.g. the Coq proof assistant [dt04].

More in line with the modelling viewpoint introduced so far, model
checking is a first-choice strategy with roots in the exploration of the state
space of a formal model of the system under study. Graph analysis, numeric
approximations, fixed-point estimations, and several other computer-based
methods are covered by this umbrella term.

In its various forms model checking can express and study nondeterminis-
tic, probabilistic/stochastic, and timed systems. The general idea is having
automatic checks run on the model, where the property under study specifies
what to look for and thus which algorithm to execute. For qualitative queries
either the property is proved to hold or (usually) a counterexample path is
given as output. For quantitative queries involving iterative procedures many
implementations choose, or require the user to input, a convergence epsilon,
and terminate computation as soon as the difference between the outcome of
two consecutive iterations is less than this value.

Whichever its flavour, the core algorithmic set used by model checking
requires a representation of all states of the model. This leads to the infamous
state explosion problem, since the size of the state space grows exponentially
with the number of variables in variable-based formalisms, which are the
input languages of most modern model checking tools—see PRISM [KNP11],
UPPAAL [BDL+06], MODEST [HHHK13], STORM [DJKV16], etc.

Many techniques exist to reduce, truncate, or abstract the state space
without affecting the model checking results, or affecting them in a known
and quantifiable manner. This has enabled the study of several real-life
systems with very large state spaces. Yet the problem is inherent to model
checking and state space reduction is an active area of research.

A different approach to analyse models, which is theoretically oblivious of

https://coq.inria.fr/
http://www.prismmodelchecker.org/
http://www.uppaal.org/
http://www.modestchecker.net/
http://www.stormchecker.org/
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Figure 2.4: Analysis by Monte Carlo simulation

the number of system states, is Monte Carlo simulation or merely simulation.
In its standard form, model analysis by simulation comprises the generation
of paths following the formal description of the system. These paths need
to be finite, so either the model naturally expresses finite executions or
some termination or truncation criteria has to be forced upon the generation
procedure. Paths are then examined from the viewpoint of the query to
determine whether or how the property is satisfied.

When the simulation mechanism is properly implemented, each new
path provides fresh, independent information about the satisfiability of the
property by the model. By means of some statistical analysis this is deemed
sufficient at certain point, after enough paths have been generated. By then
an estimate of the answer to the query is available for the user. See Figure 2.4
for a schematic representation of this procedure.

The question then arises, what does enough simulation—viz. generation
of paths—mean? Computation in model checking stops either when the
whole state space has been analysed, a state sought has been reached, or the
iterative procedure converges up to the epsilon imposed. These concepts do
not apply to the approach of analysis by simulation. Instead a statistical
notion of convergence derived from the law of large numbers is used to judge
how far the current estimate is from the real answer. It is up to the user to
choose the desired proximity, which is usually done in terms of confidence
criteria, as it will be explained in more detail in Section 2.3.4.

This thesis concerns itself with the automation of a particular approach
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to analyse models by simulation, in a scenario where the nature of either
the model or the query make it very unlikely to generate useful paths. In
such scenario standard simulation techniques are rendered useless, due to the
rarity of the event which needs to be observed for the statistical analysis to
converge. This is usually referred to as rare event simulation (RES, [RT09a]),
and implies the use of intelligent techniques to speed up convergence.

A few remarks are due before concluding this section. Recall from Sec-
tion 2.1 the three axes for model characterization introduced: nondeterminism,
probability/stochasticity, and (explicit) time. On the one hand, the latter
two can be easily encoded in simulation. Stochastic models even constitute
an ideal field for applying this technique, since formal analysis and numerical
approximations can be hard to develop for general and involved cases. Instead
discrete event simulation offers a straightforward solution which is relatively
easy to implement.

On the other hand, when faced with a nondeterministic choice and by the
very definition of it, a simulation does not know which way to go. This poses
no problem for model checking which can simply branch and follow all choices
simultaneously. Path simulation however finds here a limiting factor, though
some efforts are being currently made in this direction. Namely, [BFHH11]
shows a way to get rid of spurious nondeterminism, which is certainly no final
solution. Simulation of true or non-spurious nondeterminism is dealt with in
[HMZ+12,BCC+14] with some issues, like requiring well-structured problems
and showing bad performance in scenarios where optimal scheduling decisions
are needed. The theory from [LST14] works on MDP models, encoding
schedulers implicitly which saves on memory consumption. Among the
most modern contributions stand [DLST15,DHLS16], the latter working on
Probabilistic Timed Automata (which generalise MDP with clock variables)
using a “lightweight approach.”

Finally it is noted that, when embedded within the setting of formal
model description and verification, the simulation approach has often received
the name statistical model checking. This trend is not followed in the thesis
since the formal guarantees ensured for the results of model checking are
incomparable to the statistical notions of confidence and precision inherent
to the Monte Carlo approach. This in spite of partial overlapping of the
problems these two techniques can solve. Furthermore there lies the issue of
nondeterminism, which as explained can be naturally dealt with by model
checking yet not by simulation. Thus and henceforth the term simulation will
be used for the technique of model analysis by the generation and statistical
analysis of system paths.
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2.3.2 Simulation

There exist at least two different approaches to simulate paths from a system
model specification. In continuous simulation the succession of relevant events
is assumed to evolve continuously. This is typically the case for differential
equations that give relationships for the rates of change of the state variables
with time. For concrete examples think of rocket trajectory tracking and
simulation on FPGA circuits. Numerical analysis is often applied in such
situations, e.g. Runge-Kutta integration. Another implementation consists in
discretising time into small enough slices and sequentially see to all activity
taking place at each slice.

Discrete event simulation (DES, [LK00]) offers an alternative best suited
for systems that naturally evolve at discrete time points. No regularity in
time is required, i.e. these time points need not be equally spaced. What
matters is that system evolution takes place stepwise, so the simulator can
build a list of future events which will be dealt with orderly, one after another.
The correspondence between this approach and the automata-based model
description discussed in Section 2.1 is evident: DES is the usual way to
perform model analysis by simulation in such formalisms.

Even though the concrete implementations may vary, the basic ingredients
in DES can be always identified as follows:

• State :
� at any specific time point all system components have a clearly

defined and unambiguous state;
� states convey the notion of “current situation of things,” e.g. num-

ber of customers in the queue, number of failed disks in a cluster,
busy/free repairman module, etc;

� the state of all components regarded en masse is the system state.
• Event :

� an event is an instantaneous change in the system state;
� not all system components must be affected by an event; a single

one changing its state is sufficient;
� states only change during the occurrence and handling of events;
� an event should be atomic: even though the low-level implementation

may manage the state change of some components before others,
this shall not affect the overall final outcome at global scope;
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� from a set of possible events, usually the current system state defines
which are enabled and which not.

• Prioritised list :

� during simulation, future events are scheduled and ordered according
to some priority, e.g. occurrence in time;

� all these future events are stored in some abstract data type, like a
list or queue, where they are kept for later handling;

� the next most important event can be efficiently obtained from such
list, usually in constant time.

• Random numbers generation :

� DES is customarily employed in probabilistic/stochastic cases, which
require some way to randomise the generation of events;

� usually a pseudo– or quasi–random number generator is employed
as the seed of all randomness;

� several techniques are known to transform the [0, 1]-ranged value of
the random number generator into probabilistic/stochastic behaviour
following the desired distributions [PTVF07].

Assuming the presence of all the components mentioned above, a high-
level application of DES can be described as follows:

1. Setup the initial system state.

2. Based on the initial configuration resulting from item 1 plus the de-
scription of the system, generate a set of initially enabled events and
orderly store them in the prioritised list of events (the events list).

3. Fetch the next event, according to the order of the events list.

4. Modify the system state following the event resulting from item 3.

5. The new system state resulting from item 4 may enable new events and
disable old ones. The events list must be updated accordingly, making
sure the resulting outcome respects the events priority criteria.

6. Go back to item 3.
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The iterative procedure described above finishes either when the event list
empties, or some user-defined condition for ending the simulation is arrived
at, e.g. reaching N simulated time units.

Once DES stops, the relevant gathered data is fed to the statistical analysis
mechanism as a fresh sample. The estimate answer to the user query is then
updated and termination is considered: if enough samples have been collected
to ensure the desired statistical confidence, no more simulation is needed.
Otherwise another simulation is started.

There are also scenarios where the data for statistical analysis can be
gathered during simulation itself, viz. no termination of DES is strictly needed.
Instead, statistical information can be obtained and analysed during the
iterative procedure, which is for instance the case when asked for the average
size of a queue, or the steady-state availability of a resilient system.

2.3.3 Estimation

So far the existence of statistical procedures to process the data obtained from
simulation has been mentioned yet not explained. The required notions on
statistics are introduced here, both because it is the following obvious subject
to cover, and also since it will help to restate in a more formal sense one of
the motivations of this thesis. Some basic knowledge is assumed regarding
the theory of statistics—see e.g. [Ric06] for a reference on the subject.

The Oxford Dictionary of English defines statistics as the science of
collecting and analysing numerical data in large quantities with some inference
purpose [Oxf13]. For the scope of this thesis all numerical data will come
from discrete event simulation executed automatically in a computer. Each
individual value will be called sample and denoted X or Xi. Each sample
will be the result of a simulation and can be interpreted as the outcome of
some random variable (r.v.) whose distribution is not necessarily known.

The sampling distribution is inherent to the nature of the system model.
It should be clear that, assuming a correct use of the underlying random
number generator [PTVF07], the samples generated can be considered pairwise
independent and identically distributed (IID) in the statistical sense.

Sampling will be the process of executing discrete event simulation to
generate IID samples. The data sequence resulting from sampling will be
called a random sample and denoted {Xi}Ni=1 , signifying N IID samples were
generated in the order X1, X2, . . . , XN , where N is called the sample size.
From the mathematical point of view {Xi}Ni=1 can be seen as a sequence of
IID random variables.

https://en.oxforddictionaries.com/definition/statistics
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Given thus some random sample consider the average of its values, which
will be denoted XN for size N :

XN
.= 1
N

N∑
i=1

Xi. (2)

This value will be called the sample mean and is mostly used as an estimator of
the population mean [SS07]. Since it is the transformation of random variables,
the sample mean is a random variable itself, with its own distribution, mean,
variance, and other statistical moments. The following results will help to
study the expressions of these parameters, to gain some insight on how they
shape the RES problem. The proofs are not included; they can be found in
most textbooks on (mathematical) statistics, e.g. [Bil12,Ric06].

Proposition 1 (Chebyshev’s inequality). Let X be a random variable with
mean µ and variance σ2. Then for any real number ε > 0

P (|X − µ| > ε) 6 σ2

ε2 .

Roughly speaking Proposition 1 suggests that for small enough σ2 the
chances are high that an outcome of the r.v. X comes close to the mean
E(X) = µ. This is in line with the idea that the standard deviation of a
random variable indicates how spread out its possible values are.

It can be proven from eq. (2) that the sample mean is in fact an unbiased
estimator of the population mean, viz. E(XN ) = µ where µ is the (usually
unknown) mean of the random variables {Xi}Ni=1. Proposition 1 then says
that XN could be made arbitrarily close to µ, providing some way to reduce
its variance was known and applicable. In turn one has the intuitive idea that
the bigger the random sample, the more accurately the sample mean will
resemble µ, i.e. the less such average will deviate from the real mean. This
suggests that N and σ2 may be inversely proportional magnitudes, which
turns out to be precisely the case given the independence of the Xi:

Var(XN ) = σ2

N
. (3)

Equation (3) tells then how to reduce the variance in the formulation of
Chebyshev’s inequality: substituting X for XN and increasing the sample
size N should indeed make XN closer to µ. The following result, which is a
consequence of Proposition 1 and eq. (3), formalises a generalisation of this
statement.
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Theorem 2 (Law of Large Numbers). Let X1, X2, . . . , Xi, . . . be a sequence
of independent random variables with E(Xi) = µ and V ar(Xi) = σ2 for
all i > 1. Let XN be the average up to the N-th random variable, viz.
XN

.= 1
N

∑N
i=1Xi. Then for any real number ε > 0

P
(
|XN − µ| > ε

)
→ 0 as N →∞.

Notice Theorem 2 does not require the random variables to be identically
distributed. The strictly weaker condition of having the same first and second
moments is enough to ensure the result, which is also clearly satisfied by the
simulation approach studied.

In the proposed setting where sampling comes from discrete event simula-
tion, Theorem 2 can be interpreted as follows: when estimating the average
behaviour of the model, several executions should be simulated; the more
paths one generates, the closer their mean can be expected to resemble the
true average behaviour.

Furthermore the resemblance can be made arbitrarily close, as long as
one can keep producing samples. Conceptually, the estimation of the average
behaviour will be improved by increasing the sample size. This is proved in
[CR65] assuming that the random sample converges and σ2 <∞.

2.3.4 Convergence and stopping criteria

The Law of Large Numbers provides sufficient conditions for the informal
notion of enough sampling to have a meaning, where one can choose a priori a
desired proximity to µ and then produce enough samples until it is achieved.
However this result only states such value exists, i.e. that there is an N which
will satisfy the user’s needs†. It speaks nothing about how to effectively
measure the proximity to µ of the current sample mean.

Quantifying this proximity is of great practical use. Typically when
analysing a model with simulation, the user requests the estimation of some
value within certain accuracy. Independent simulations are launched to
generate the random sample, from which e.g. the sample mean is used to
build an estimate for the value sought. The Law of Large Numbers says
a time will come when enough samples have been generated to grant the
requested accuracy, yet that is not enough for practical purposes. It is crucial
to know, or give some guarantees about, how close the current estimate is

† Strictly speaking this is stated in the strong law of large numbers, a variant of Theorem 2.
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to the real value, and whether more samples should be generated. Some
termination criteria is of the essence.

Luckily there are limiting properties of the sum of random variables which
provide ways to measure the accuracy of the current estimate, helping to
build a termination criterion. Notice that for any random variable X the
standardised random variable Z defined as

Z
.= X − E(X)√

Var(X)

satisfies E(Z) = 0, Var(Z) = 1. Let CN be the sum of some random sample
of size N with mean µ and variance σ2, i.e. CN

.= ∑N
i=1Xi. Theorem 2

says CN/N converges to µ; the following result studies this convergence and
gives an explicit cumulative distribution function for the standardization
ZN

.= (CN −Nµ)/(σ
√
N).

Theorem 3 (Central Limit Theorem). Let {Xi}Ni=1 be a random sample where
all r.v. have mean µ and finite positive variance σ2. Let CN = ∑N

i=1Xi, then

lim
N→∞

P

(
CN −Nµ
σ
√
N

6 z

)
= Φ(z)

for finite z ∈ R, where Φ(z) is the cumulative distribution function of the
standard normal distribution:

Φ(z) = 1√
2π

∫ z

−∞
e−

x2
2 dx .

Theorem 3 talks about convergence in distribution, stating the standard-
ised sample mean ZN converges to the cumulative distribution function of the
standard normal distribution. Generally speaking the speed of convergence
depends on the real distribution of the Xi, high skewness and long tails
playing against it. Several rules of thumb exists about which N is large
enough to start using the approximation of the Central Limit Theorem, e.g.
N > 30, or CN > 5 ∧ N ∗ (1 − CN/N) > 5 for binomial proportions. Of
course and in general, the larger the sample the better the approximation.

Strictly speaking Theorem 3 should be applied if the variance of the popu-
lation is known. In most practical situations σ2 is unknown and approximated
with the unbiased estimator

S2
N
.= 1
N − 1

N∑
i=1

(
Xi −XN

)2
. (4)
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In such cases the longer-tailed Student’s t-distribution with N − 1 degrees of
freedom should be used instead, since it does not depend on the population
value σ2. Formally:

XN − µ
SN/
√
N
∼ TN−1 (5)

where SN
.=
√
S2
N , µ is unknown, and the Student’s t-distribution with ν ∈ R

degrees of freedom is characterised by the probability density function

fν(t) = 1
√
ν B(1

2 ,
ν
2 )

(
1 + t2

ν

)− ν+1
2

where B is the Beta function. The corresponding cumulative distribution
function Tν(t) is harder to express and thus not included. It is a known result
that Tν(x) converges to Φ(x) when ν →∞, coherently relating eq. (5) with
Theorem 3.

From the practical point of view and given the symmetry of the cumu-
lative distribution function of the Student’s t-distribution (i.e. Tν(−t) =
1 − Tν(t)), this means that for sufficiently large N one can assume that
P (−t < ZN < t) ≈ 2TN−1(t)− 1. Notice the use of the standardization

ZN = XN − µ
σ/
√
N

since CN = N XN , where SN from eq. (4) is to be used in the above equation
as an approximation for σ when the population variance is unknown.

To see how these results fit in the scenario of model analysis by simulation,
suppose the user wants to find out the likelihood γ of satisfying certain
property in the model. Furthermore, and here lies the core asset, he requests
an upper bound of ε > 0 for the probability of error in the estimation.

The standard Monte Carlo approach via discrete event simulation gen-
erates several, N say, independent simulations. Each simulation results in
some path which will either satisfy the property or not. Thus a random
sample {Xi}Ni=1 is generated, where Xi = 1 if the i-th simulated path satisfies
the property and Xi = 0 otherwise. This definition of the Xi means the
queried likelihood is the population mean, γ = µ. Thus a straightforward
estimator γ̂ for the likelihood is the sample mean XN . Denote X = XN and
σX = SN/

√
N, then the following yields a (conservative) quantification of the

https://en.wikipedia.org/wiki/Beta_function
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error incurred in the approximation:

P (|γ̂ − γ| 6 ε) = P (−ε 6 γ̂ − γ 6 ε)

= P

(
− ε

σX
6
X − µ
σX

6
ε

σX

)

≈ 2TN−1

(
ε

σX

)
− 1.

Notice only point estimates have been considered so far, i.e. the user is
given an estimate γ̂ ∈ R of the real value γ he wishes to know, and can
compute the probability of error incurred in the estimation. The approach
usually followed in practice is slightly more involved and adds an interval to
the information provided by the point estimate.

Definition 5 (Confidence Interval). Given some random sample {Xi}Ni=1
drawn from a population, a confidence interval (CI) around some parameter
θ ∈ R of the population is an interval [l, u] ⊂ R, whose bounds l, u are
random variables derived from the sample, and which contains (covers) the
real parameter θ with some known probability.

Definition 5 is rather lax because the specific expression of the interval may
vary depending on the parameter to estimate and the nature of the sample.
For this thesis the main interest is to build a CI around the population
mean µ. Denote by zα the α-quantile of the standard normal distribution
for 0 < α < 1, i.e. the area to the right of zα ∈ R under the curve of its
density function is α. Using the symmetry of this function together with the
approximation provided by the Central Limit Theorem this means

P

(
−zα

2
6
X − µ
σX

6 zα
2

)
≈ 1− α

or equivalently

P
(
X − zα

2
σX 6 µ 6 X + zα

2
σX

)
≈ 1− α. (6)

Equation (6) expresses clearly that for sufficiently large samples, the
probability that µ lies in the interval X ± zα

2
σX is approximated by 1− α.

This interval is thus called a 100(1 − α)% confidence interval. The value
CL = 100(1 − α) ∈ (0, 100) is the confidence level and its width 2zα

2
σX is

the precision of the interval. The same analysis follows using Student’s t-
distribution instead of the normal distribution, when the population variance
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is unknown. The theoretical coverage for a given confidence level CL states
that, out of M � 1 intervals of confidence level CL generated from IID
samples, M CL

100 of them should contain the real value µ.
All ingredients are now ready to perform a full model analysis by simula-

tion. The user provides a formal description of the model and the property
to verify in some temporal logic. He also specifies the desired confidence level
and precision for the estimation. Simulations are sequentially run using the
discrete event simulation approach, yielding concrete values for X and σX
(or whichever estimate γ̂ and its variance correspond). Since the confidence
level has been fixed, this yields in turn concrete values for the precision of
the interval, which according to Theorem 2 will eventually decrease. Compu-
tation stops as soon as the achieved precision falls below the one requested,
i.e. when our estimate is accurate enough. As an alternative approach the
user could choose a confidence level and simulation time, and measure the
achieved precision once simulation finishes.

2.4 Rare events

The recipe provided in Sections 2.3.2 to 2.3.4 to estimate an answer for the
user query by simulation is fairly broad. Theoretically it is only limited
by the feasibility to generate simulation paths on the model (usually a
straightforward task) and the computability of the expression of the estimator
used. It is nevertheless its efficiency, rather than its generality, what limits
its application.

Denote by z ∈ R the quantile from eq. (6), regardless of whether a
standard normal distribution or Student’s t-distribution is used. Also, denote
by σ̂ the measured standard deviation of the estimator γ̂ used to approximate
the value of the real unknown value γ. The speed of convergence of the
iterative simulate/estimate-procedure is strongly related to the precision
requested for the CI, i.e. 2zσ̂. For instance when the estimator is the sample
mean, γ̂ = XN , the precision decreases as the inverse square root of the
sample size, since then either σ̂ = σ/

√
N or σ̂ =

√
S2

N/N. This convergence
speed is known to be moderately efficient in many practical applications.

Nonetheless and as earlier stated, this thesis is concerned with the study of
rare events, meaning 0 < γ � 1. For very small numbers, e.g. γ ≈ 10−8 and
smaller, the absolute error given by the expression zσ̂ is not representative
enough [RT09a]. Instead the relative error captures in a more flexible and
meaningful way the accuracy of the estimation.
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Definition 6 (Relative Error). Let [l, u] be a confidence interval built around
some parameter γ with precision 2zσ̂. The relative error (RE) of the confi-
dence interval is its absolute error divided by the parameter:

RE[l,u]
.= zσ̂

γ
.

Usually the real value of γ is unknown, in which case the estimate γ̂ is
to be used for sufficiently large samples. The relative error can be thought
of in terms of the precision of the interval relative to the estimated value.
Asking for a 10% relative error means e.g. computation will stop when the
half-width of the CI built around the estimate is smaller or equal than γ̂/10,
i.e. 10% of the estimate.

Figure 2.5 shows graphically why using relative error when dealing with
rare events is important and more flexible than working with absolute errors.
Since one does not know a priori the magnitude of γ, requesting for instance
10−7 of interval precision might seem tight enough. Yet if γ is even one order
of magnitude lower than that, the resulting CI will most likely include 0,
suggesting the rare event under study could actually not take place. That is
undesired since it omits information which could have been provided with
perhaps little more simulation effort. The relative error avoids this problem
altogether by ensuring the half-width of the CI will be smaller than γ̂.

1e-80 2e-8 3e-8 4e-8

( )
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Figure 2.5: Confidence interval built with relative error

Consider now the estimation of a binomial proportion, i.e. γ is the
probability of success of some experiment. A simulation will represent an
experiment run, and its outcome will be 1 if it succeeded and 0 if it failed,
much in line with the examples presented so far. The estimator for γ will be
γ̂ = X and the usual estimator for the variance in these cases is σ̂2 = γ̂(1− γ̂)/N.
Then for any confidence interval CI

RECI = z

√
γ̂(1− γ̂)√
N γ̂

≈ z√
N γ̂

.
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The last expression becomes huge for very small values of γ, which is
a situation naturally exacerbated by the rarity of the event. Say the user
requests a 95% confidence interval and relative error of 10% with γ ≈ 10−8.
Then z ≈ 1.96 and hence N should be greater than 3.84 × 1010 to satisfy
the user needs. In this scenario where very few experiments are successful,
standard-simulation times can easily become unreasonable. If each simulation
takes 1 ms to complete, a computing system with a single execution thread
would take 444 days (more than a year!) to satisfy the above criteria.

Modern computers can alleviate this by using parallelism in its various
dimensions (ILP, DLP, TLP, etc.) Together with smart implementations and
to a certain extent, this can counter the presence of γ in the denominator of
Definition 6. Yet there are systems characterised by an exponential decay,
where polynomial modifications of some model parameter θ (e.g. increase
by one the queue capacity) produces an exponential decrease of γ—see e.g.
[Gar00,KN99]. In an exponentially decaying regime the standard approach
of model analysis by simulation takes an exponential time to converge:
for constants c, k ∈ R>0 one has Tstd(θ) = O(ckθ). An asymptotically
efficient estimator would instead converge within time polynomial in the
rarity parameter: Taeff(θ) = O(θk′) for some constant k′ > 0 [Gar00, Sec. 2.2.1].

The infeasible long times exemplified in the situation above are clearly
inherent to the standard Monte Carlo approach, when it is used to analyse a
model in a RES scenario. This inefficiency plus the issue of real coverage, i.e.
whether or not the theoretical coverage is met by the confidence intervals built,
are the main challenges presented by the rare event problem [RT09a,GRT09].
The core of the complication comes from the fact that 0 < γ � 1, which
implies very few useful paths will be generated during simulation. The two
complementary techniques described next have been developed and perfected
during the last thirty years to counter this.

Importance sampling modifies the sampling distribution (hence the name)
in a way that increases the chance to visit the rare states of the model.
This introduces a bias in the resulting point estimate to be corrected with
a previously computed likelihood ratio. Evidently the change of measure
requires a non-trivial understanding of the system under study. Moreover this
modification needs to be tractable to allow the computation of the likelihood
ratio, meaning it has to be characterised by some function selected ad hoc
by the user with certain desired properties like integrability. A bad choice of
(change of) measure may have a negative impact on the simulation resulting
in longer computation times. In spite of these limiting factors, importance
sampling has been successfully applied to several complex and even real-life
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systems—see e.g. [GSH+92,KN99,XLL07,dVRLR09,LT11].
Importance splitting, also known as multilevel splitting, works by de-

composing the state space in multiple layers or levels. A level should be
higher as the probability of reaching the rare event from its composing states
grows, so ideally the rare event would be at the top. Estimation consists
in multiplying the estimates of the (not so rare) conditional probabilities of
a simulation path moving one level up. The effectiveness of this technique
crucially depends on an adequate grouping of states into levels, which is done
by some user selected importance function. This function assigns a value to
each state, its importance, which should reflect the likelihood of observing
the rare event after visiting that state. So, a state in the rare set should
receive the highest importance and the importance of the states decreases
according to the probability of reaching the rare event from them.

Most of the critique affecting the change of measure in importance sam-
pling is also applicable to the importance function in importance splitting.
This thesis conjectures that building a good importance function is easier
to be carried out by automatic procedures than choosing a good change
of measure, providing a formalised user query and automata-based model
descriptions are available. By “easier” it is meant that fewer assumptions
need to be made about the nature of the system, most remarkably there
is no need to rely on the memoryless property of the Markovian case. The
term “good” is mild in the sense that it only implies an improvement over the
standard Monte Carlo approach to analysis by simulation. This thesis does
not seek optimality; there are no conjectures about the difficulty of finding
an optimal or asymptotically efficient importance function.

Based on that conjecture, we developed algorithms to automatically derive
the importance function from the user query and system model description,
and present them in the following chapters. To understand the solutions
proposed in full detail, a deeper description of the importance splitting
technique is presented in the remainder of this chapter.

A last remark is due before concluding the current section. Recall it was
earlier stated that importance sampling and importance splitting can be
regarded as complementary techniques. On the one hand this is because split-
ting relies on the possibility to layer the state space, so that the probabilities
of crossing “one level at a time” can be computed separately and efficiently.
In general this requires long paths between the initial system conditions and
the rare event. If the rarity depends on taking very few transitions, each one
extremely unlikely to happen, then splitting fails since no efficient layering
may be applied to the state space of the model. In such scenario importance
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sampling, when applicable, should provide a more natural solution.
On the other hand, when paths from the initial system state need to

follow a long and heterogeneous trajectory before reaching a rare state, it can
become extremely difficult to choose a change of measure which consistently
selects the best transition at each turn. That is why importance splitting
can sometimes be the best suited option, particularly in circumstances when
many and dissimilar states must be visited before reaching a rare one, or in
general when the nature of the model makes it too hard to come up with a
tractable and efficient change of measure.

2.5 Importance splitting

In this section several approaches to perform model analysis by simulation
employing efficient splitting techniques are described. From here onward the
terms importance splitting, splitting technique, multilevel splitting, and the
abbreviation I-SPLIT, will be used interchangeably to refer to the approaches
for RES described here.

2.5.1 General theory

There are at least two different angles to look at I-SPLIT:

• An original idea by Kahn and Harris was developed from a physical point
of view in [KH51], where simulations of particle trajectories were saved
and restarted at certain promising states, in order to generate more
observations of the rare event. This view bears a strong similarity to
another technique introduced by Bayes in the seventies [Bay70,Bay72],
which became widespread twenty years later when it was updated
and formally extended by José Villén-Altamirano and Manuel Villén-
Altamirano, who coined the name Repetitive Simulation Trials After
Reaching Thresholds (RESTART, [VAVA91,VAMGF94]).

• Another more inherently mathematical overview is to consider the
state space of the system as a nested sequence of events, for the
formal notion of event from probability theory [Bre68, Def. 2.1]. So given
E0 ⊇ E1 ⊇ · · · ⊇ En let the states in En define the rare event embedded
in the full state space E0, and let pi be the conditional probability that
a simulation path reaches Ei given it started from Ei−1. Then the



40 BACKGROUND

probability of visiting a rare state is the product ∏n
i=1 pi as detailed in

[LLGLT09, pp. 42–43].

The notion mentioned first, involving saving and restarting simulation
paths, is analysed in depth in Section 2.6 since it is of particular interest for
this thesis. The second, more general mathematical definition is described
in the remainder of this section, to formally define the splitting technique
and introduce some known implementations. All these share the core idea
behind splitting to attack the RES problem, but variate to some extent in
their approach and properties. Some basic notions on probability theory are
required to grasp the following definition. Fundamentals are presented in
Appendix B. The reader is referred to [Dur10, Chap. 1] or [Bre68, Chap. 2] for
an introduction on the subject.

Formal setting for importance splitting in RES

Suppose the dynamics of the system is described by a stochastic process
X

.= {Xt | t > 0}. A probability space (Ω,F , P ) and a measurable space
(S,Σ) are assumed so that each Xt is a random variable on Ω taking values
on S, denoted the state space or sampling set.

Time t can be either continuous (on the real line) or discrete (on the
non-negative integers N .= {0, 1, 2, . . .}). For convergence purposes in the
continuous case, all paths (viz. outcomes of X) are assumed right-continuous
with left-hand limits, aka càdlàg.

Moreover and for these definitions, X is assumed to be a Markov process.
Since the history of the process can be incorporated inside the system state
Xt, this assumption is made without loss of generality for the whole category
of time-homogeneous stochastic processes [Gar00, Sec. 2.2].

An event will be a measurable subset of the sampling set, i.e. an element
of Σ. Let A ( S be the rare event of interest, that is a (measurable) set of
states the system can enter with positive but very small probability, e.g. a
failure in a digital data storage facility leading to information loss. An event
B ( S is also assumed, denoting some stop or end-of-simulation condition
which satisfies B ∩A = ∅ and P (B) .= P (Xt ∈ B) > 0.

Definition 7 (Entrance time). Let C ⊆ S be an event which happens with
positive probability, viz. C ∈ Σ ∧ P (C) > 0. Then the entrance time into C
is the r.v. describing the first time that event C is sampled, i.e.

TC
.= inf{t > 0 | Xt ∈ C}.
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Two ways to analyse systems are of special interest for RES: transient
and steady-state analysis. Both are involved with computing or estimating a
very small probability value γ, viz. 0 < γ � 1, related to the observation of
the rare event A. The way of defining γ is what draws the difference between
these approaches. This is formalised in Definitions 8 and 9.

Definition 8. In the formal setting described above, the transient probability
of the rare event will be the probability value

γ = P (TA 6 TB)

where TA, TB are the entrance times into A,B respectively.

Definition 8 is common in the RES literature—see e.g. [Gar00, Sec. 2.2] and
[LLGLT09, Sec. 3.2.1]. It speaks of observing the rare event before reaching
some stopping time TB, here characterised by event B. This can be generalised
to any (almost surely finite) time T , which might be of interest when defining
simulation truncation not by an event but rather by the passage of time, e.g.
“ the probability that a Poke is chosen before T simulation time units elapse. ”
Equivalently, time could be included in the state of process X, to speak of a
finite time horizon event-wise.

Recall interest lies in the application of I-SPLIT to a formal model descrip-
tion scenario resembling that of model checking. Thus the probability from
Definition 8 should be encoded as a user query expressed in some temporal
logic. Luckily there is a straightforward mapping from that probability to
the PCTL formula

P(¬B UA) (7)
i.e. “the probability of not observing the stopping condition B until the rare
event A takes place.” Notice such query is not pure PCTL since it asks for
the numeric probability value rather than whether that value is greater or
less than some bound. That is however of no concern since P can appear
only at top level and not as sub-expression of neither A nor B, so the last
remarks from Section 2.2 apply. Also events A and B need to be encoded as
logic formulae. Since PCTL subsumes propositional logic then e.g. A can be
simply “¬overcrowd.” From here onward the transient analysis for RES
will be an implicit reference to either Definition 8 or eq. (7).

Definition 9. In the formal setting described above, the steady-state probability
of the rare event will be the probability value

γ = lim
t→∞

P (Xt ∈ A)
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also denoted the long run probability of the rare event.
Instead of simply writing P (A), the underlying stochastic process X is

made explicit in Definition 9 to highlight the dependence on the asymptotic
time limit. Steady-state studies have also appeared in the RES literature,
most notably in the research around the RESTART splitting technique—see
e.g. [VAVA91,VAMGF94]. For a formalisation resembling the one given above
the user is referred to [Gar00, Chap. 6], where steady-state analysis is defined
in terms of regenerative processes.

Definition 9 asks about the time proportion spent visiting rare states
when the system is in equilibrium. For Markovian processes it is easy to
compute the transition rates that characterise a system in equilibrium, but for
general stochastic processes that is usually too hard. The standard simulation
approach is to discard some initial system execution path considered transient,
and then proceed using the batch means technique [LK00], which favours the
discard of transient simulation behaviour.

Just like in the transient case, some related formula from a temporal logic
is desired to characterise user queries of the probability in Definition 9. The
simple CSL formula

S(A) (8)
talks about “the likelihood of event A in a system in equilibrium,” i.e. the
time proportion in the long run that states in A are visited. This fits in CSL
in the same way eq. (7) does with PCTL. From here onward the steady-state
analysis for RES will be referring to either Definition 9 or eq. (8).

In both transient and steady-state analysis for RES, the value γ is positive
but very small since the likelihood of reaching its characterizing set A is
extremely low. Importance splitting is based on the assumption that there
are identifiable intermediate states subsets which must be visited to reach
the rare event, and which are much more likely than A to be reached by a
simulation path. Formally, the decreasing sequence of events

S = E0 ⊃ E1 ⊃ · · · ⊃ En−1 ⊃ En = A

is assumed, where a projecting function f : S → R>0 called the importance
function determines events Ei. Since it defines the intermediate events which
are the cornerstone of the technique, this function is a key component in
multilevel splitting. Level values Li ∈ R>0 typically called thresholds are
chosen satisfying Li < Li+1 for 0 6 i < n. The events are then defined by
means of f and the thresholds:

∀i ∈ {0, 1, . . . , n} . Ei
.= {s ∈ S | f(s) > Li}.
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Along the thesis and unless noted otherwise it will be L0
.= 0 and L .= Ln,

resulting in A = {s ∈ S | f(s) > L}. Furthermore all simulation paths start
in the initial state of the system s0 ∈ S = E0

†, which should ideally have
minimum importance, i.e. f(s0) = L0 = 0. Nonetheless the more general
condition f(s0) < L1 is sufficient to ensure s0 /∈ E1 as desired.

Notice that in such setting, every simulation path must increasingly
traverse all events before reaching a state in A. Besides, considering that
P (E0) = P (Xt ∈ S) = 1 and Ei+1 ⊂ Ei for 0 6 i < n, the identity

γ = P (En)

= P (En)
P (En−1)

P (En−1)
P (En−2) · · ·

P (E2)
P (E1)

P (E1)
P (E0) P (E0)

= P (En ∩ En−1)
P (En−1)

P (En−1 ∩ En−2)
P (En−2) · · · P (E2 ∩ E1)

P (E1)
P (E1 ∩ E0)
P (E0) P (E0)

= P (En|En−1)P (En−1|En−2) · · · P (E1|E0)P (E0)

=
n−1∏
i=0

pi (9)

follows by definition of conditional probability, where the conditional proba-
bility of raising one level, from event Ei into Ei+1, is denoted

pi
.= P (Ei+1 | Ei) for 0 6 i < n. (10)

The efficiency of multilevel splitting depends on choosing the importance
function and the thresholds s.t. pi � γ for all i. Thus a stepwise estimation
of the pi can be done more efficiently than an outright estimation of γ.

Since time does not appear explicitly, the previous considerations can
be directly mapped to steady-state analysis for a system in equilibrium (cf.
[VAMGF94, Sec. 2.2], where the probability of the rare event is defined in a
way matching eq. (9) for the renaming (Ei, pi, γ) 7→ (Ci+1, Pi+1, P )).

Transient studies are based on the same principles. Usually a filtration
{Ai}ni=0 is defined for Ai

.= {Ti 6 TB} where Ti is the entrance time into
event Ei, so P (An) = P (Tn 6 TB) = γ and P (A0) = P (T0 6 TB) = 1. In
such setting the conditional probabilities are defined in terms of the filtration:
pi = P (Ai+1 | Ai). This line of analysis reaches an identity analogous to
eq. (9). See [Gar00, Sec. 2.4] and [LLGLT09, pp. 42–45] for a detailed study.

† An initial probability distribution could also be considered.
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Most useful I-SPLIT implementations do not allow a fully independent
estimation of the conditional probabilities, because the entrance distribu-
tion to Ei affects estimates of pi to a great extent, conditioning also the
estimates for all pj with j > i. Still these probabilities can be computed
somewhat separately by taking into account a statistical approximation of
the entrance states to each Ei, which resemble the real entrance distributions
asymptotically. The general multilevel approach is described next.

With an abuse of notation, event Zi
.= Ei \Ei+1 will henceforth be called

the i-th importance zone or level, and the values {Li}ni=0 will exclusively be
referred to as thresholds. So the i-th importance level will be the set of states
which the importance function places between thresholds Li (including it)
and Li+1 (excluding it). The initial system state will be located in the 0-th
(bottom) importance level and the rare states will be said to pertain to the
n-th (last) level. See Figure 2.6 for a schematic representation.
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Figure 2.6: Multilevel splitting scenario

Definition 10 (Level-up probability). Let events {Ei}ni=0 define the impor-
tance levels {Zi}ni=0 in an importance splitting setting. Let Si be the r.v.
with image on Ei which yields the states through which a simulation path
can enter Ei. The probability of moving up from level i into level i+ 1 is the
probability that a simulation path visits Ei+1, conditioned on the entrance
distribution into level i: P (Ei+1 | Si).
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The level-up probability can be thought of as the probability that a
sample path starting at the lower threshold of stage i will hit the upper
threshold [Gar00, Sec. 2.4]. Definition 10 helps connecting the mathematical
notions defined so far, with the simulation technique which will be described
algorithmically. In particular, the following will be of use when proving the
unbiasedness of the method.

Proposition 4.
P (Ei+1 | Si) = pi

Proof. The setting in which pi was defined in eq. (10) involves simulation
paths traversing Ei to reach any state in Ei+1. Given process X is Marko-
vian, the entrance states into an event Ei fully determine the future of
the simulations traversing that region. This means random variable Si
from Definition 10 condenses all information regarding a path traversing Ei.
Hence, in the setting of eqs. (9) and (10), conditioning on Ei is equivalent to
conditioning on Si. 2

Basic multilevel splitting approach to RES

Denote by T the time defined by the condition to end the simulation, regard-
less of whether it is the almost surely finite entrance time TB from transient
analysis, or a finite time horizon (or regenerative cycle duration) in the
batch means implementation of steady-state analysis. Denote also by Ti the
entrance time into the i-th importance level, viz. the first time a simulation
visits a state s ∈ S s.t. f(s) > Li.

Start N0 independent simulation paths from the initial state of the system
model, s0. Each of these original paths advances until it either reaches T or
the entrance time T1, whichever happens first. This will be denoted stage 0
or the first stage of multilevel splitting.

Let R0 be the number of simulations which managed to enter the first im-
portance level, e.g. for which T1 < T . A total of N0 independent experiments
were thus run in this first stage, each having (unconditional) probability
p0 to succeed. Since R0 counts the number of successes, it has binomial
distribution: R0 ∼ Bin(N0, p0). It follows that E(R0) = N0 p0, where E(Y )
denotes the expected value of the random variable Y .

Notice p̂0
.= R0/N0 is an unbiased estimator for p0, because N0 ∈ N and

thus E(p̂0) = 1/N0 E(R0) = p0. Furthermore states {sk1}R0
k=1 ⊆ E1 realizing the

successful trajectories are an empirical sample of the entrance distribution
into E1. So each sk1 is an observation of the r.v. S1 from Definition 10.
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Next, in stage 1, N1 simulation replicas or offsprings are started from
those R0 states. In order to maintain a sufficiently large sampling population
and assuming R0 can be small, it is expected thatN1 > R0. By the pigeonhole
principle this means more than one simulation may be started from each
state. The selection can be done by cloning (or splitting) the simulations
that reached each sk1, or choosing randomly where to start each of the N1
simulations from the R0 available options.

Each new trajectory is again simulated from its starting state until either
T or T2 occur, whichever happens first. Let R1 be the number of simulations
where T2 < T . Stage 1 thus consists of N1 experiments, and the r.v. R1
counts the successful simulations which reached the second importance level.

Nonetheless, a binomial distribution cannot be unconditionally assumed,
because not all simulations are necessarily independent. Some may have
started from the same state sk1, sharing their history up to that point.

Recall however that states {sk1}R0
k=1 have an asymptotic behaviour de-

scribed by the distribution of S1. Thus when conditioned on such random
variable, stage 1 can indeed be regarded as a Binomial experiment.

To gain on intuition, think that knowing the full history back to s0, where
the original N0 independent simulations were bootstrapped, suffices to grant
the statistical independence sought in the simulations of stage 1. Moreover,
conditioning on S1 is reasonable because the starting states of stage 1 are an
empirical sample of that random variable.

By Proposition 4, each of the N1 launched simulations succeeds with
probability P (E2 | S1) = p1. Furthermore E(R1 | S1) = N1 p1. Consider the
estimator p̂1

.= R1/N1, then clearly E(p̂1 | S1) = 1/N1 E(R1 | S1) = p1.
Generalizing this approach, at the i-th stage Ni simulation paths are

launched from the Ri−1 previously successful trajectories. This is repeated
until the last level is reached. By then all estimates {p̂i}n−1

i=0 will have been
computed, whose product provides an estimator for γ:

γ̂ =
n−1∏
i=0

p̂i . (11)

Interestingly, even though eq. (11) yields an unbiased estimate of γ as it
will be shown next, the intermediate proportions p̂i = Ri/Ni depend on each
other as indicated (p̂0 aside). This is a consequence of the dependence of i-th
stage paths on the entrance distribution to the i-th importance level.

This dependence can be very strong if the importance function and the
thresholds are not chosen carefully, which can reduce greatly the efficiency of
the splitting technique. More on this in Section 2.7.
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Unbiasedness of the estimator
The core idea is to exchange product for expectation in the sequence {p̂i}n−1

i=0
of estimates from eq. (11). Notice first that the previous remarks regarding
the unbiasedness of p̂1 can be extrapolated to any estimate, as long as the
full history of trajectories up to its corresponding importance level is known.

For 1 6 k < n denote Fk the σ-algebra associated with the stochastic
process {Si}ki=1, then

E(p̂i | Fi) = pi

for all 0 < i < n (cf. [Gar00, equations 2.5 to 2.8]). Consequently by the law of
total expectation, for any two different indices i, j ∈ {0, . . . , n− 1} (assume
i < j w.l.o.g., cf. [Gar00, eq. 2.13])

E(p̂ip̂j) = E(E(p̂ip̂j | Fj))
= E( p̂i E(p̂j | Fj))
= E(p̂ipj)
= E(p̂i) pj
= E(E(p̂i | Fi)) pj
= pipj .

Theorem 5 (Unbiasedness of I-SPLIT, [Gar00]). In the approach described
above, the expected value of the estimator from eq. (11) is the probability of
the rare event from eq. (9), viz.

E(γ̂) = γ.

Proof. Recursively applying the previous argument one gets E(∏n−1
i=0 p̂i) =∏n−1

i=0 pi. The desired equality follows by equations (11) and (9). 2

2.5.2 Variants of the basic splitting technique

There are many ways to implement multilevel splitting. The basic approach
described in Section 2.5.1 is just one example well suited for introductory
purposes and for proving unbiasedness. A neatly organised overview of
various implementation alternatives is presented in [LLGLT09, Sec. 3.2.2], of
which a reviewed summary is shown next.

How to choose the number of offsprings Ni at each stage is a pivotal
decision. Typical strategies are:
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• Fixed splitting. In the i-th stage, each successful simulation path
reaching the upper threshold generates the same number of offsprings
Ki ∈ N. The total number of simulation paths Ni+1 = RiKi in the next
stage is thus a random variable. This is sensitive to both the {Ki}n−1

i=1
and the {Ri}n−1

i=0 . If Ri = 0 the technique suffers from starvation since
no offsprings will be produced. IfKi � Ni+1/Ri then too many offsprings
will be produced and the technique suffers from computational overhead.

• Fixed effort. A predetermined number Ni ∈ N of offsprings is started
during the i-th stage. If Ri−1 < Ni then these offsprings can be assigned
to the available Ri−1 starting states randomly or deterministically. This
rules out the possibility of overhead, but can suffer from starvation if
Ni is too small to ensure Ri > 0.

• Fixed success. The number Ri > 0 of successful simulation paths in
the i-th stage is predetermined. Thus Ni is a random variable for the
i-th stage, since sufficient simulations need to be launched to reach the
desired Ri. This can cause computational overhead but cannot suffer
from starvation by definition.

These three strategies have different performance implications. Fixed
splitting can be considered lightweight w.r.t. memory consumption, since it
allows a depth-first search (DFS) implementation [LLGLT09, p. 45]. Namely,
during the first stage each original path is simulated until min(T, T1). If T1
takes place it yields K1 offsprings from that path; then each of these offsprings
is simulated until min(T, T2), and so on, before moving on to attend the next
original path.

Such DFS approach cannot be applied to the other two alternatives,
which need to attend one importance level at a time and keep in memory all
resulting entrance states into each level.

In the basic approach introduced, all simulation paths have the same
weight at any importance level. In a fixed splitting scenario, consider a more
general setting where trajectories can be assigned different weights. Each of
the N0 original trajectories in the bottom importance level will have weight 1.
During the next stage in the first importance level, each offspring will have
relative weight 1/K1 , since it comes from an original trajectory with weight 1
that was split K1 times.

This means the successful paths in the uppermost level will have relative
weight (∏n−1

i=1 Ki)−1. Then the estimator γ̂ is the sum of relative weights of
these final successful trajectories divided by N0.
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Such generalised approach, which takes the relative weights of the simu-
lation paths into account, is of special use when the rare event can appear in
low importance levels. More on this in Section 2.6.

Estimator γ̂ from eq. (11) is efficient, because its variance is smaller
than the standard Monte Carlo estimator of γ [Gar00, Sec. 2.4.3]. A smaller
variance means less samples are needed to converge. Nevertheless, when
practical applications are considered, the computation time of each sample
has a direct impact on the convergence wall-clock time.

For instance in fixed effort and fixed success, paths are simulated until
the upper threshold or final time T are met. In transient analysis the average
computational time to reach T may increase significantly with the importance
level i where the path started [LLGLT09, p. 46].

Symmetrically, the maximum computational parallelism can act as bot-
tleneck in fixed splitting. Since new paths are injected each time an upper
threshold is reached, there is a risk of having an exponential explosion in the
resulting number of concurrent trajectories.

To keep at bay the computational overhead derived from potentially
long simulation paths, early path termination (aka path truncation) is a
typical strategy. The essence of path truncation is to select and kill ideally
unpromising trajectories, before its “natural cause of death” (e.g. reaching
T ) takes place. Several strategies have been studied:

• Deterministic truncation. For some selected die-out depth β ∈ N, kill
any trajectory that submerges more than β levels from its creation
level. That is, if some path originated from an entrance state into Ei,
it will be truncated as soon as it visits a state in level i− 1−β or lower.
This requires a proper weighing of paths to avoid introducing a bias in
the estimation.

• Probabilistic truncation. For die-out depth β, i-th level paths go through
a Russian roulette test each time they down-cross a level deeper than
i − β. More precisely, numbers {ri,j}n−1

j=β ∈ R>0 are chosen for paths
originated in the i-th importance level. These are truncated with
probability 1− 1/ri,j as they cross level i− 1− j downwards for j > β.
On survival their weight is multiplied by ri,j . To reduce the variance
introduced by weighing, a simulated trajectory of weight w is cloned
w−1 times as it reaches the uppermost level†; then each of these newly
independent paths will have weight 1.

† Non-integral w require special treatment, see see [LLGLT09].
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• Periodic truncation. Similarly to the probabilistic version, numbers
{ri,j}n−1

j=β ∈ R>0 are chosen for i-th level trajectories and global β ∈ N.
To reduce the variability of the Russian roulette approach numbers
Di,j are uniformly chosen once among {1, . . . , ri,j}. Then for i-th level
trajectories, every (ri,j Di,j)-th path to go down level i−1− j for j > β
is retained and its weight is multiplied by ri,j ; all other i-th level paths
to do so are killed.

• Tagged truncation. Each i-th level path is tagged to the importance
level number (i− 1− j) with some probability which increases with j
for j > β. Trajectories are truncated iff they visit their tagged levels.

Popular implementations
Some selections of the above criteria have been thoroughly studied and
successfully applied to several case studies, becoming somewhat conventional
in the RES community. Three versions of such implementations of importance
splitting are briefly described next.

• RESTART is a method developed by the Villén-Altamirano brothers and
covered in depth in the next section. It follows a DFS approach which
uses fixed splitting when a simulation path reaches a threshold upwards.
As this happens a single offspring is tagged as the original path which
came from the previous level. Truncation is deterministic with β = 0,
i.e. any copy of the original path that crosses downwards its creation
level is killed. This reinforces the idea of favouring promising runs and
discarding unpromising ones. To avoid starvation the original path from
the previous level is spared as it goes down, somehow resembling tagged
truncation. There is a single original simulation path for each RESTART
run with weight 1, and the relative weighing scheme explained above is
used for N0 = 1.

• Fixed Effort is a term coined by Marnix Garvels in his Ph.D. thesis
to refer to a breadth-first search (BFS) approach to I-SPLIT much in
line with the basic setting initially described in Section 2.5.1. It has
also been called plainly splitting in a comparison against RESTART
[VAVA06]. It consists of an incremental approach starting at the bottom
importance level, which truncates simulations as soon as they reach the
stopping time T or the upper importance level. The entrance states into
the next level, pinpointed by the successful paths which were truncated



2.5.2 Variants of the basic technique 51

upon reaching the upper threshold, are saved and used as starting
points for the simulations in the the next stage. Each importance level
is covered in this way, one at a time, until the rare event is reached.
By then, estimates p̂i for the conditional probabilities of Definition 10
have been computed for each level, which are multiplied to estimate
the rare event following eq. (11).
This method uses fixed effort with deterministic choice as offspring
generation mechanism, plus deterministic path truncation. Notice
in the standard implementation paths are not truncated when they
go down an importance level, as it is done in RESTART, unless this
happens together with T . Moreover no weighing is necessary since
trajectories are not allowed to cross thresholds; in that respect all they
do is determine the starting states for the next level simulations when
they successfully reach the upper threshold.

• Adaptive Multilevel Splitting [CG07] and its successor Sequential Monte
Carlo [CDMFG12] are harder to place in the current picture, since they
skip the pre-selection of thresholds {Li}ni=1 by discovering them dynam-
ically while simulation paths are pushed towards the rare event. Here
the user is asked the desired level up probability pi a priori, making
the number of levels n the random variable to estimate.
For the sake of clarity let p = pi for all levels i ∈ {0, . . . , n}, where the
total number of levels n is unknown. Initially starting from stage 0, at
the i-th stage m independent simulation paths start from m predefined
states (e.g. in stage 0 these m states are the initial state), and run
until they meet some termination criteria, e.g. reaching T . Each path
visited several states with different importance. Let vji be the highest
importance value seen by the j-th path, then the i-th stage yields
the data set Vi = {vji }mj=1. For k = dpme, let νki be the (m − k)-th
m-quantile of Vi. That is, for Vi seen as an array sorted in increasing
order, let νki equal the value in the (m− k)-th position. Then νki is the
candidate for upper threshold of the i-th stage, because a simulation
will reach it with probability p (roughly). Furthermore, any state which
has importance νki and was visited during these runs, is a potential
starting point for the simulations in the next stage.
Eventually the rare event is reached and the number of stages n deter-
mined, yielding the rare event estimate γ̂ .= pn. These implementations
are ideal for continuous state spaces, with potential practical problems
when applied to discrete models.
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2.6 RESTART

In the literature about RES, one of the best known versions of importance
splitting is the RESTART method. Already in 1970 A. J. Bayes introduced
an accelerated simulation method to estimate the probability of a stochastic
process being in a state of a rare set [Bay70], with many of the properties men-
tioned above. Twenty years later in 1991 José and Manuel Villén-Altamirano
rediscovered the method in [VAVA91] coining the famous acronym. Later on
they first generalised it to work with multiple thresholds in [VAMGF94], and
then in [VA98] to handle a rare event which can occur inside any importance
level. Both the versatility of the technique and its relative ease of implemen-
tation make it a perfect candidate for the general approach sought in this
thesis. A deeper insight of its characteristics is hence presented below.

A thorough explanation of (a mature version of) RESTART can be found
in [VAVA11, Sec. 2], a transcription of which is given next using a notation
more compliant with the one we have presented so far. A Markov process
X = {Xt | t > 0} is assumed, and thresholds {Li}ni>0 are defined on the real
line, determining importance regions S = E0 ⊃ E1 ⊃ · · · ⊃ En ⊇ A for a rare
set A. This is done via an importance function f : S → R which maps the
state space S of X into the real line, so Ei = {s ∈ S | f(s) > Li}. Notice
“region Ei” here is the same as “event Ei” in the formal setting previously
introduced for general I-SPLIT. Likewise, importance zones Zi

.= Ei \ Ei+1
(denoting Zn

.= En) create a partition of S where the higher the value of i,
the higher the importance of the states contained.

With an abuse of notation and exclusively when talking about the execu-
tion of RESTART, we will use the term event to refer to a simulation incident,
i.e. an occurrence that changes the state of the underlying Markov process.
So, given a simulation path traversing S, let a rare event or A event refer to
this path taking a transition whose target is a rare state s ∈ A. Define an
Ei event in the same way for any region Ei. Let also a Bi event denote the
path taking a transition s→ s′ whose originating and target states satisfy
f(s) < Li and f(s′) > Li respectively. That is, a Bi event tells when the
simulation has “gone up” into the i-th importance region. Equivalently define
a Di event when the simulation “goes down” from the i-th importance region
into any zone Zj with j < i. RESTART works as follows:

1. A simulation path called the main trial starts from the initial system
state s0 ∈ Z0. This path will last until a predefined end-of-simulation
condition is met, say a finite time horizon T or an almost surely finite
entrance time into a stopping set.
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2. Each time an event B1 occurs in the main trial the system state is
saved, the main trial is interrupted, and K1 − 1 offsprings or retrials of
level 1 are generated.

� A retrial is just an independent simulation path which originates
from the entrance state into some higher region by another trial.
In this case, by the main trial entering E1.

� A retrial of level 1 is truncated when it causes a D1 event (viz.
goes down to zone Z0) or meets the end-of-simulation condition.

� Notice the execution thread of the computer switched from the
main trial to its offsprings, following the DFS approach described
for fixed splitting in Section 2.5.1. An equivalent mechanism will
be set in motion as these offsprings generate B2 events.

3. After the K1− 1 retrials have been attended until truncation, the main
trial is restored at the saved state from the B1 event.

� Including this original trial, the total number of simulated paths
between events B1 and D1 is K1. Each of these K1 trajectories is
called a [B1, D1)-trial.

� Only the main trial can continue after D1, potentially generating
new B1 events and thus avoiding starvation.

4. Each [B1, D1)-trial could have triggered a B2 event during its execution.
As this happens an analogous process is set in motion: K2−1 offsprings
of level 2 are launched, starting in the state which caused B2 and
finishing in a D2 event.

� The trial from level 1 that generated the B2 event is the original
trial of level 1, and is the only one that will survive a D2 event.

� Just like the main trial before, the original trial of level 1 can then
generate more B2 events. It will be killed however if it generates
a D1 event, since it is a retrial of level 1 and thus a [B1, D1)-trial.

� Counting the original trial of level 1, there are K2 trials of level 2,
denoted [B2, D2)-trials.

5. In general for 1 6 i 6 n, Ki ∈ N is the number of [Bi, Di)-trials
launched each time a Bi event is triggered by a [Bi−1, Di−1)-trial.

� Ki is called the i-th splitting factor or splitting value. It is a
constant chosen a priori by the user, with the restriction Ki > 1.
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RARE

From the initial state the
path evolves until threshold
L1 is crossed upwards in A .
Splitting is then performed
for K1 = 3 since this is a B1
event. The two offsprings of
level 1 will then evolve inde-
pendently: one hits thresh-
old L2 in B generating a
B2 event and splitting for

K2 = 2; the other hits L1 downwards in C , generating a D1 event
which truncates it. The main trial also generates a D1 event in D ,
but survives it since it is the original trial from level 0.

Figure 2.7: Schematic representation of a RESTART run

The method as described above relies on an ideal implementation, where
the rare event is entirely contained in the uppermost region and a simulation
path can rise by at most one importance region at each step. In such setting
any trajectory visiting a rare state has traversed all splitting stages, which
stacked up on every threshold crossed. An unbiased estimator is obtained
applying the relative weighing scheme with a weight equal to 1 for the main
trial. Thus the relative weight of a level n retrial producing a rare event in
zone Zn is 1/K, for the stacked splitting factor K .= ∏n

i=1Ki.
Notice that, if simulations were monotonically increasing in importance,

the stacked splitting factor is actually the maximum number of offsprings
which could be concurrently running in the uppermost importance region.
Thus K can also be introduced as the statistical oversampling incurred by
the offsprings of level n that visit the rare set A.

To provide an explicit formula for an estimator derived from a RESTART
simulation, consider first a steady-state analysis in a continuous time model.
Say M retrials of level n eventually make it to the rare set. For some finite
time horizon T <∞ of a batch means run, say the (simulation) time each
retrial spent on the rare event is {t∗j}Mj=1. Then given T ∗

.= ∑M
j=1 t

∗
j , an

unbiased estimator for the time proportion (viz. the steady-state probability)
of the rare event is

γ̂
.= T ∗

K T
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corresponding to a single batch means execution of T time units of simulation,
where K is the stacked splitting factor. Proofs for the unbiasedness of this
estimator can be found in [VAVA02,VAVA11]†.

RESTART can also be applied to transient analysis, obtaining an equally
unbiased estimator—see e.g. [GHSZ98,GHSZ99,GK98,GVOK02]. The idea is to
launch N0 main trials instead of the single one of steady-state analysis, since
each trial is expected to be short lived. Say M retrials of level n make it to
the rare set A before entering the stopping set B. These have been benefited
from the stacking up of the splitting mechanism, thus each has relative weight
1/K. There is no permanence time to measure, since simulations are truncated
as soon as they visit a rare state; what counts is them having reached A
before B. So M can be thought of as the number of successes in a pseudo
binomial experiment where each single experiment is of RESTART nature
rather than Bernoulli. The estimator in this setting is:

γ̂
.= M

KN0

where K accounts for the statistical oversampling, acting as relative weight
of the M successful simulations.

Care must be taken when studying transient properties with RESTART
under this pseudo binomial perspective. Compared to the binary outcome of
a standard Bernoulli experiment, a single RESTART run has a potentially
unbounded outcome. Think e.g. of a situation where the main trial goes up
and down the first threshold repetitively: then arbitrarily many B1 events
could be generated, whose spawned offsprings may visit the rare event in
enough proportion to ensure M > K. Furthermore, not only could the
outcome of a RESTART run be greater than 1, but it could also take any
value in {0, 1/K, 2/K, . . . ,K − 1/K, 1}, due to the weighing of K.

For these reasons, performing transient analysis with RESTART cannot
be strictly regarded as estimating the proportion p of a Binomial experiment.
As a consequence, when computing confidence intervals around the point
estimates generated by the application of RESTART, the usual strategies for
Binomial proportions (e.g. using the Wilson score interval or the Agresti-Coull
interval) cannot be directly applied.

In spite of such complications, one must remember that our interest
lies in the expected behaviour of the technique: the estimators given above

† An interesting generalised proof is given in Recent Advances in RESTART Simulation,
a seminar the Villén-Altamirano brothers presented in RESIM 2008.

http://resim.irisa.fr/
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are unbiased because their expectations converge to the desired population
parameters. For steady-state analysis this means that prolonging the total
simulation time T will draw the estimate closer to the true long run behaviour
of the system. For transient analysis it is the number of main trials N0 that
must be increased, in order to obtain a more significative estimate.

As mentioned before, all of the above applies to an ideal implementation
of the technique, where it is assumed a simulation path can rise by at most
one importance region at each step. Generally speaking the definition of
the Markov process X and the choice of importance function may allow a
simulation path to jump over some importance zone, viz. taking a transition
s→ s′ with s ∈ Zi−1 and s′ ∈ Ei+1. In such cases it must be considered that
several Bi events occurred simultaneously, and the corresponding splitting,
tagging, and saving of states must be dealt with accordingly.

For instance, say transition s → s′ jumps over zone Zi, e.g. f(s) < Li
and f(s′) = Li+1. Since that is a Bi event, Ki − 1 retrials of level i have to
be launched starting in state s′ and finishing when an event Di occurs. Yet
taking that transition also means each of those trials (including the original
one from level i − 1) is causing a Bi+1 event. Since the total number of
[Bi, Di)-trials is Ki, then Ki(Ki+1 − 1) retrials of level i+ 1 are also started
from state s′, which will finish when an event Di+1 takes place. In total
there are thus KiKi+1 simulation paths: the original trial from level i− 1;
the Ki − 1 retrials of level i which will be killed by a Di event; and the
Ki(Ki+1 − 1) retrials of level i+ 1 which will be killed by a Di+1 event.

Another potential yet realistic complication is having a rare event which
can occur in any importance region, not only En [VA98]. From the point of
view of the implementation this can be countered quite easily. It suffices to
consider the relative weight of the simulation paths visiting the rare states,
which here need not be 1/K but will be W`

.= 1/
∏`

i=1 Ki for a rare state in
zone Z` with ` 6 n. A proper tagging of the simulations allows to inject this
update into the estimators above described: retrials of level i will be tagged
with weight Wi and the global division by K is replaced by multiplication
with the corresponding Wi, as in [VA98, eq. (2)].

Notice however that in a scenario where a rare state lies in zone Z` for
` < n, the sampling of the rare event will not benefit from the full power of
the splitting procedure. The efficiency of the method hence deteriorates, as
analysed in depth in [VA98,VAVA11].
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2.7 Applicability and performance of I-SPLIT

RESTART is indeed versatile as to the scope of system models where it can
be applied—see e.g. [VAMGF94,GK98,GHSZ99,VAVA06,VA07b,VA07a,VA09,
VAVA13,VA14,BDH15]. It is nonetheless relevant, as with any other splitting
technique, to know how efficiently it can be applied in each case.

In [GHSZ98,GHSZ99], sufficient conditions for an asymptotically efficient
application of RESTART are provided, one of whose basic hypothesis is to
work only with countable-state Markov chains. These kind of restrictions,
commonplace in the literature due to the good properties of the memoryless
distribution, are too strong for the general objectives of this thesis.

The next chapters present automatable techniques for the implementation
of multilevel splitting, which aim at covering the broad scope of (time-
homogeneous but otherwise general) stochastic processes. This automation
should nonetheless introduce as few restrictions as possible. Recall the goal
is not optimality but rather applicability of the splitting technique, in any
way that outperforms the standard Monte Carlo approach that was detailed
in Section 2.3.2.

The variance of the estimators is the most usual theoretic instrument
employed to measure and contrast the performance of different estimation
mechanisms. Such variance has a direct impact in the precision of the confi-
dence intervals produced, and thus (generally) in the convergence times. In
consequence, to decide whether RESTART is a good candidate for experi-
mentation with I-SPLIT, some mathematical characterization for the variance
of its estimators is desirable.

The authors Manuel and José Villén-Altamirano have developed several
expressions for such variance, some of them reported in [VAVA02]. They
all are purely theoretical in nature, meaning they cannot be effectively
computed in real-life applications, at least not for general stochastic models.
Nevertheless they show that for optimal, quasi-optimal, and even merely
good implementations of the method, there is indeed an expected gain in
using RESTART over standard Monte Carlo simulation [VAVA11].

Remarkably, the optimal and quasi-optimal selection of parameters pro-
posed in [VAVA11] are impractical due to the assumptions these make on
the systems [VAVA11, Sec. 5]. Notwithstanding this inconvenience, a good
implementation of RESTART can anyhow be performed. Specific guidelines
for such an “effective application” of the method are given in [VAVA11], fitting
the objectives of this thesis wonderfully. Specifically, four main distinct
factors affecting performance are reported:
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fO Inefficiency due to the computing overhead.
This is related to the concrete implementation of the computational
methods, which depends also on the model. It is affected by the evalu-
ation of the importance function every time a state is visited (e.g. at
each simulation step), the comparison of the resulting importance to
the threshold values, and the context switch for saving and restoring
states during replication and truncation. So for instance the number
of variables of the system influences RESTART negatively. There is
no universal solution for this source of inefficiency: in general smaller
models should be favoured, and good design patterns and programming
techniques are paramount to minimise the overhead derived from state
manipulation and from the evaluation of the importance function.

fK Inefficiency due to the splitting values.‡

When discussing the fixed splitting strategy for offspring generation
in Section 2.5.1, it was said that a careless selection of the splitting
factors {Ki}ni=1 can lead to overhead or starvation. Optimal and quasi-
optimal values for all Ki require a dense state space S. For the general
case there is a procedure based on pilot runs starting from the initial
state s0, which increasingly chooses the Ki trying to fulfill the balanced
growth equation [Gar00, eq. (2.25)]. This requires a previous fixing of
the thresholds and operates with a balancing procedure: when the i-th
threshold is granted a splitting value bigger than desired (e.g. due to the
discreteness of the state space), it will be compensated with a smaller
Ki+1, and vice versa. The performance incidence of an error in this
selection mechanism should be only moderate [VAVA11].

fL Inefficiency due to the threshold levels.§

The selection of the number and location of the thresholds is similar in
impact to the choice of splitting values, since these two parameters are
intimately related in a fixed splitting strategy. Up to a certain point,
choosing thresholds too close to each other can be countered by reducing
the splitting. Nevertheless, setting them too far apart may incur in
unavoidable starvation: notice the extreme case of a single threshold
at the boundary of A, which would turn I-SPLIT into standard Monte
Carlo simulation. In this respect, the authors of RESTART recommend

‡ In [VAVA11] this appears as factor fR; here it is renamed to fit the current notation.
§ In [VAVA11] this appears as factor fT ; here it is renamed to fit the current notation.
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using pilot runs and statistical analysis, trying to fix the values {Li}ni=1
so that the probability of level up is near 1/2. If the nature of the model
makes this impossible, e.g. the probability of a single transition s→ s′

is already lower than 0.5, the thresholds are set as close as possible to
each other. A subsequent choice of splitting values will try to counter
such situations using the balanced growth heuristic.

fV Inefficiency due to the variance of the Bi events.
This factor speaks of the variance in the true importance of a Bi event,
as the event is triggered by different entrance states into region Ei.
That is, the unknown theoretical probability of observing a rare event
after visiting the state that caused the Bi event. If this importance
varies much with the entrance states into the different regions, the
performance of the technique can deteriorate greatly, since the splitting
at the i-th threshold will not cause an homogeneous oversampling, and
the outcomes of independent RESTART runs could variate significantly.
Even worse, some trajectories may be favoured over others, which could
yield an incorrect estimation. This in spite of the unbiasedness of the
method, since the computation of the CI could prematurely converge to
a wrong estimate, because no trajectories have yet been sampled from
an unlikely but representative set. RESTART is quite sensitive to this
factor, which is affected by the concrete modelling of the system and
the choice of the importance function f : S → R.

From the four factors exposed, the last one, fV , is the most difficult to
counter systematically. Guidelines are provided in [VAVA11] to reduce it, but
seem difficult to generalise outside the scope of that work. That is because
it depends on the nature of the particular problem under study, which has
mostly led to ad hoc solutions, very well suited for the situations where they
are proposed, but inapplicable in a different scenario. As stated in Section 2.1,
formal system modelling offers several tools to structure the description of a
system. This could alleviate the fV problem, inasmuch a highly-structured
description of the model can be produced, with little variability among the
real importance of the states that lead to a Bi event.

Yet even in the best scenario, there remains the issue of the choice of
an importance function. This too has mostly been dealt with in a per case
basis: most articles on importance splitting propose ad hoc functions for some
selected case studies and show how well (or bad) these perform. Computation
of generic functions is still mostly a novel field, with the exceptions mentioned
in Section 1.2.
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Evidently, the performance implications of a good choice of importance
function go beyond RESTART; factor fV above is just a concrete example
of how critical this can be. Since all splitting techniques guide simulations
in an attempt to visit the states with the highest (computed) importance,
a bad function choice will result in a bad splitting technique, regardless of
its particular characteristics. This will be theoretically and empirically
illustrated in the following chapters.

As earlier stated, the general motivations of this thesis involve automating
the analysis by simulation of general stochastic models under rare event con-
ditions. Given the great potential for innovation and the direct impact it could
have in industry, automatic importance function derivation for the application
of importance splitting techniques to RES is a promising area of research, and
the main speci�c goal of this thesis.



Automatic I-SPLIT:
monolithic approach 3
This chapter presents two main contributions of the thesis: how to derive
an importance function from a global model of the system, and how to
use that function in an automatic approach for multilevel splitting. The
relevance and sensitivity of the choice of importance function for I-SPLIT is
illustrated by means of some practical examples. Then, a formal framework
for system modelling is determined, upon which the derivation algorithm is
defined. An automated implementation of the full analysis process for RES
is introduced after that. Finally the efficiency of this technique, as well as its
major limitation, are demonstrated by means of case studies.

3.1 The importance of the importance function

The same formal setting from Section 2.5 will be used here. That is, there is
some time-homogeneous stochastic process X = {Xt | t > 0}, with discrete
or continuous time t, describing the model under study. For the following
definitions X is required to satisfy the Markov property. This can be done
w.l.o.g. since the history of the system can be included into the state Xt of
the process—see [Gar00, Sec. 2.2].

The state space is denoted S and the rare set is A ⊂ S, which the process
samples with positive but very small probability 0 < γ � 1. Events are
measurable subsets of S, and A is also denoted the rare event. The general
goal in rare event simulation is to compute the probability value γ of observing
the rare event, using statistical analysis on some set of paths simulated from
the initial system state s0 ∈ S \A. Both transient and steady-state analysis
are of interest as introduced by Definitions 8 and 9.

The splitting technique relies on a decomposition of S grouping together
states with similar probability of leading to the rare event. The computational
approach is the simulation of paths, so this speaks of the probability that a
path visiting a state will eventually reach the rare event. Furthermore since
X is Markovian, it is enough to just consider paths starting from each state.
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From this point of view a visit to A can be seen as a goal to achieve, and the
grade of importance of a state s ∈ S would reflect the likelihood of achieving
the goal when paths start from s. The following definition formalises a
quantification of this property.

Definition 11. For time-homogeneous Markov process X, let A ⊂ S be a
rare event in its state space. The true importance of a state s ∈ S is the
probability that a simulation path starting from s will visit some state in A,
viz. that a r.v. from X observes event A, conditioned on the initial state s.

Notice the true importance of the initial state s0 is precisely γ. Evidently
these values are unknown in general but for the states in A, and one of the
goals of RES is to estimate them. In importance splitting this is done for s0
employing some predefined scaled approximation of such values, which must
cover the full state space. Such (arbitrary) approximation is known in the
literature under the name of importance function (also score function [JLS13]
and rate function [GHSZ98]), and it can be any projection which maps the
states into some totally ordered set or field:

Definition 12. An importance function (I-FUN) is a mapping

f : S → R.

For each s ∈ S the value f(s) ∈ R is the computed importance or simply the
importance of s.

The quality of this approximation is strongly correlated to the performance
of the technique. The more it resembles the (scaled) true importance of the
states, the faster the method should converge—see Section 2.7. As a matter
of fact once the system model has been formalised, deciding on an importance
function is usually the first step for the application of multilevel splitting.
Most techniques even have procedures to select and tune other execution
parameters based on a user-provided definition of the I-FUN. Take for instance
[CG07] which only needs the choice of ratio k/n besides this function, or the
guidelines given in [VAVA11] to derive the thresholds and the splitting factors
for a practical application of RESTART.

Unfortunately Definition 12 leaves all the work to the implementer. Any
heuristic should assign the importance values coherently with Definition 11,
but this is infeasible from a practical viewpoint, otherwise the solution to the
problem would be known already. Historically, the most popular way to make
this choice is defining the function ad hoc given the particular system under
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study. Be that as it may and on top of its inextensibility, such approach
requires a qualified human decision which could nonetheless be mistaken,
with significant performance implications. The sensitivity of I-SPLIT to the
choice of importance function is illustrated in the following practical setting.

Example 1 : Queueing system with breakdowns.

Consider the Markovian queueing system from Figure 3.1 where there is
a single buffer, buf, to which several sources send packets concurrently.
The sources can be of type i ∈ {1, 2} and have exponentially distributed
on/off times characterised by parameters αi and βi respectively. When
active, sources of type i send packets to the system bus at rate λi, which
are immediately enqueued in buf. Enqueued packets are handled by a
server at rate µ as long as it is operational. The server breaks down
periodically at rate ξ and gets repaired at rate δ.
This system was originally studied in [KN99] for an initial state with a
single enqueued packet, a broken server, and all sources down but for
one of type 2. Using importance sampling the authors estimated the
transient probability of reaching a parametric maximum capacity K ∈ N
in the buffer before the server could process all enqueued packets.

Type 1 sources Type 2 sources

buf

Server

Figure 3.1: Queueing system with breakdowns

The presence of buf and of several distinct components, each with its
own state, makes this also an attractive case for I-SPLIT. The state of
the corresponding Markov process X = {Xt | t > 0} should include
the server status: an inherently Boolean random variable which can be
encoded as an integer taking the value 1 when the server is operational
and 0 otherwise. Process X should also include information regarding
the status of each source, which can be equally encoded as integers, and
of the number of packets in the buffer, of clearly integral nature. Given
thus X, applying multilevel splitting in any of its flavours requires one
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to decide how important each state Xt is. Equivalently: how should the
importance function f be defined in this setting?
Let buf ∈ N denote the number of packets enqueued in buf. Given the
rare event is concerned exclusively with a buffer overflow, a naïve approach
would propose f(Xt) = buf . Let f1 : S → N denote this importance
function, then f1 is oblivious of how many sources are actively sending
packets to the buffer. That sounds unreasonable since no incoming
packets means no possibility of overflow. Let then f2(Xt)

.= buf +∑ sk1 +∑
sk2 be the importance function which adds to buf the number of active

sources, with random variable ski corresponding to the activation status
of the k-th source of type i as described above.
The convergence times of RESTART using these two functions (and some
others) were compared in [BDH15], for 95% confidence intervals with 5%
relative error, testing buffer capacities K ∈ {20, 40, 80, 160} with the
same system parameters as in [KN99]. Surprisingly f1 behaved at least
as well as f2, outperforming it in several occasions. In some settings the
difference was remarkable, e.g. for K = 80 and with a global splitting
value of 5, f1 converged more than 8 times faster than f2.
This unexpected behaviour could be due to the use of RESTART as
splitting technique, or to the particularities of its implementation in the
tool used for the test. It could also be explained on theoretic grounds,
arguing the joint enqueueing rate and the service attendance rate are too
fast w.r.t. the up/down times of the sources. Thus including their state
in the importance generates an irrelevant layering of the state space,
which would then cause fruitless computational overhead during the
splitting/truncation procedures. 2

Optimal and asymptotically efficient choices of importance functions
evidently require deep knowledge and some assumptions over the model.
However, in spite of the Markovian nature and overall simplicity of the
queueing system above, the selection of a merely good importance function
proved to be a tricky issue. It is for instance unclear whether taking the
state of the sources into account was mistaken altogether. It may only be
that their inclusion in the importance ought to be weighed down by some
scaling factor. But then which factor would yield the best results?

To make matters worse, any change in the definition of the rare event can
degrade the performance of otherwise well behaved functions. Say the rare
event from Example 1 is instead defined as a buffer overflow when all sources
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of type 1 are active. Then importance measurement should definitely include
the state of these sources, thus f2 would behave better than f1 (right?). So
a particular definition of f needs to be built not only for every system, but
also for every interesting analysis of it.

Complications strive further, since even in seemingly simple scenarios
where the rare event leaves little doubt as to which system components the
I-FUN should consider, concealed complexities of the system (or worse, of
particular system parameters) may trick the user into a natural yet inefficient
choice. That is illustrated by the following case study.

Example 2: Tandem queue.

Consider a tandem Jackson network consisting of two connected queues
as depicted in Figure 3.2. Customers arrive at the first queue following a
Poisson process with parameter λ. After being served by server 1 at rate
µ1 they enter the second queue, where they are attended by server 2 at
rate µ2. After this second service customers leave the system.
Time lapses between events are exponentially distributed and independent
between stations. That is, inter-arrival time is independent of the service
times, and the time elapsing between two services in the first (resp.
second) server is independent of the arrival times and of the service
times in the second (resp. first) server. Thus the stochastic process
{(q1, q2)t | t > 0}, where Xt

.= (q1, q2)t is the number of customers in the
first and second queues at time t, is Markovian and time-homogeneous.
This model has received considerable attention in the literature—see e.g.
[GHSZ98,Gar00,GVOK02,VA07b,LDT07,VAVA11].

Figure 3.2: Tandem queue

For some limiting capacity L ∈ N it is interesting to study the transient
behaviour of the queues for the rare event of an overflow in the second
one, viz. q2 > L. Let the system start execution with no customers in the
first queue and a single one in the second queue, and let the measure of
interest be the probability of full occupancy in the second queue before
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it empties (this is called a regenerative cycle in [GHSZ99,VAVA06]). How
then should f be defined?
Since the rare event involves only the second queue a naïve alternative is
f((q1, q2)t) = q2. It would be strange however that the value of q1 played
no role at all in the true importance of Xt: even with L− 1 customers in
the second queue, no rare event can be immediately observed if q1 = 0.
Name f1(Xt)

.= q2; most modern literature discourages choosing f1 as
importance function, in view of considerations similar to these.
In contrast to state (0, L− 1) as presented above, let the current system
state be (L, 3/4L). Then, providing the first server is not much slower
than the second one, Xt could quickly lead to the desired overflow,
despite the fact that q2 is quite far from full. This leads to propose
f2(Xt)

.= q1 + q2 as state importance. However, if the first queue is
the bottleneck and the rarity of the overflow is due to very fast service
times at the second queue, the value of q1 has little influence on the true
importance of Xt, and f2 should not perform that well.
Generalising in this direction one comes up with the family of functions
fα1,α2(Xt)

.= α1 q1 +α2 q2, where the selection of the weights αi ∈ [0, 1]R
is behind the resulting performance of the function in each particular
framework. Then f1 = fα1=0,α2=1 and f2 = fα1=1,α2=1. As it happens,
the optimal choice of weights depends on the comparative order between
the loads of the queues, ρ1 and ρ2 [VAVA06,LDT07,LLGLT09]. These loads
are inversely related to the service rates following the formula ρi

.= λ/µi.
But the essence of the question still remains: how should α1 and α2 be
chosen in order to maximise the efficiency of function fα1,α2?
In a setting where ρ1 < ρ2, [VA07b, Sec. 4.1] suggests using α1 = α2 = 1,
i.e. f2. The author derives this formula when looking for the linear
combination between q1 and q2 which would minimise some expression
of the variance of the estimator. An adaptation of this approach is
also followed in [LDT07, Sec. 5.2]. Both works report good results: the
measured variance of f1 was quite bigger than that of f2.
In contrast, in a scenario where ρ1 > ρ2 (viz. the first queue is the
bottleneck), [VAVA06,VA07b] suggest using α1 = 0.6, α2 = 1, as optimal
weights to minimise the variance. This is at odds with the computational
times reported in Table 1 of [BDH15], where f1 was the fastest ad hoc
function in a framework coherent with the one from those works. That
table shows that both f2 and fα1=1,α2=2 were notably slower to converge
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than f1. To discard outlier behaviour further tests were performed with
the function f3

.= fα1=3,α2=5, for which the ratio α1/α2 = 0.6 is the
same as for the optimal choice of weights mentioned. The performance
measured for f3 was comparable to that of f2 in [BDH15], i.e. it took
considerably longer than f1 to build the desired CI. 2

There are two main conclusions to be drawn from Example 2. First, the
selection of optimal (or good) weights αi ∈ [0, 1]R for importance function
fα1,α2 is by no means trivial. It depends at least on the comparative order of
the queue loads ρi and may also be influenced by other parameters, e.g. the
finitude of the queues, or the relationship between the queue sizes and the
concrete load values (rather than just their comparative order). This in spite
of the stark simplicity of the system, which has only two components with
plain interaction dynamics. As described, variations in parameters of the
system can lead to modifications in the overall behaviour, which deteriorate
the performance of otherwise good importance functions.

Another implication of Example 2 is that though precise, theoretical
analysis can be misleading if some factors slip from attention. Achieving a
fully comprehensive analysis may prove hard: to derive the optimal weights
for ρ1 > ρ2 in [VA07b], the author assumes a boundless first queue and some
specific behaviour in the servers†. On top of the difference in the exact rate
values λ, µ1, µ2, and besides the scaling of α1, α2 in f3 to imitate the optimal
weights ratio α1/α2 = 0.6, these assumptions could be the reason behind
the discrepancy between [VA07b] and the empirical results from [BDH15].
Also notice theoretical analysis was oriented to minimise the variance of the
estimator, which should be proportional to the convergence wall-clock times,
but could be suboptimal for a concrete implementation of a technique.

It is thus clear that finding weights αi leading to an efficient importance
function fα1,α2 in a particular setting of the tandem queue problem is a
non-trivial task. The choice will depend on the specific values of the system
parameters, any empirical assumption of the general behaviour (e.g. the first
queue cannot overflow), and the definition of the rare event. Regarding the
last remark, recall Example 2 deals with the probability of overflow in the
second queue within a regenerative cycle. Which importance function would
perform well for estimating the probability of the event q1 + q2 > L? And if

† From [VA07b, p. 153]: “we will make the following assumption: In a two-queue tandem
Jackson network with loads ρ1 > ρ2, if the initial system state is (q1, 1) and . . . empty,
q1 customers will be in the second queue when the first one becomes empty.”
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the interest was in studying the steady-state behaviour of the process?
On the whole, each time the system or the study angle change, new

analyses are needed to come up with an efficient expression of the importance
function for the application of I-SPLIT. As illustrated in the previous examples,
this task is not only hard but also very limited in scope. That is why, for the
effective use of splitting in real-life situations, counting with some automatic
algorithm is paramount, to derive the importance function from the concrete
descriptions of the system model and user query.

3.2 Deriving an importance function

I-FUN distillation can be approached from many angles, depending on the
needs and intentions of the study. In this section the specific approach
proposed is explained, for which the necessary formal basis is stated. The
section concludes with the pseudocode of an algorithm to derive an I-FUN
from a formal model and rare event specifications.

3.2.1 Objective

Two approaches are customary when giving instructions on how to select
an appropriate importance function. From a rather practical point of view,
it is possible to settle on some specific category of systems. Rigorous but
not necessarily formal guidelines can be provided, to build a function with
small variance for some determined splitting technique. This strategy is
quite popular for the study of processes arising from real-life problems, e.g.
queueing Jackson networks, since it provides solutions of bounded flexibility
but which are easy to implement and use in the practical setting they where
designed to attack. See e.g. [CAB05,VAVA13,VA14].

Instead, from a more abstract point of view the intention could be to
build a function with appealing theoretic properties. Asymptotic efficiency,
bounded normal approximation, and optimality (minimizing an expression of
the variance of a given estimator) are typical goals. This is usually approached
in an analytic fashion, formalizing rather strong restrictions on the nature
of the systems covered, for which the presented strategy shows the desired
properties. The main advantage of this approach is the quality of the resulting
function, which will perform well, or as good as possible, regardless of the
rarity of the event. See e.g. [GHSZ99,DD09,GHML11].

In this thesis the objective is to provide an automatic algorithm which,
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for user provided formalisations of a time-homogeneous stochastic process
X and some rare event to study, will yield an importance function on the
full state space of X. To this aim the modelling formalisms from Section 2.1
are used for specifying the system models. In turn the rare event will be
described as a property query matching those in Section 2.2.

The resulting automatic importance function is not required to be optimal
or even asymptotically efficiency. The goal is to allow an effective application
of multilevel splitting which outperforms the standard Monte Carlo approach
from Section 2.3. Moreover, the automatic I-FUN is expected to perform at
least as well as any simple and general ad hoc choice. That is, discarding
solutions formally tailored for the particularities of the system under study,
the function derived by the algorithm proposed should be as efficient as any
alternative the user may come up with.

This last objective cannot be formally stated since the user could always
“simply come up with” an optimal solution to the problem considered. Our
strategy was to carry out an extensive verification, experimenting with case
studies well-known in the literature about RES. This approach grants some
consistent notion of the grade to which our aim was satisfied.

We have devised a tool that implements the derivation algorithm for
the automatic importance function, and RESTART as I-SPLIT simulation
technique. A user-defined importance function can also be fed to the tool, so
the performance of several alternative functions can be compared on equal
grounds. In this framework various models and definitions of the rare event
have been studied, comparing the performance of the automatic I-FUN and
several ad hoc proposals.

3.2.2 Formal setting

The derivation algorithm we will present performs a breadth-first search on
the adjacency graph inherent to the state space of the model. Thus having
only a finite number of system states will suffice to ensure termination. Also
a single initial state is considered for the sake of simplicity.

In this chapter the focus will be on the finite discrete and continuous
time Markov chains from Definitions 2 and 3, even though the derivation
algorithm is oblivious of the memoryless property. This is motivated by the
software tool developed to study the properties of the technique, and also
because the DTMC and CTMC formalisms offer a well known basis which
will facilitate explanations.

There are only two relevant properties which need to be distinguished
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during the execution of a simulation: whether the current state is rare,
i.e. part of the rare event, and whether it signals path truncation, i.e. if
it is a stop state. The set of atomic propositions will thus generally be
AP = {rare, stop}. The rare event A ⊂ S will be composed of the states
s ∈ S for which Lab(s) = {rare}, and in transient analysis the stopping
set B ⊂ S is identified by the label stop, i.e. simulation paths will be
truncated when they reach a state with that label. Since B ∩ A = ∅ then
∀s ∈ S . |Lab(s)| 6 1.

Definitions 2 and 3 give a hint of how to represent in an abstract data type
the structure of a DTMC or CTMC model. They are quite alike: they only
differ in the particular restrictions the elements of P and R must respectively
satisfy. In both cases the system transitions are described in a (usually sparse)
matrix of dimension S2, from which an adjacency graph of the states can be
extracted. This is exploited by the algorithm introduced next.

3.2.3 Derivation algorithm

In Section 2.7 it was generally stated that the choice of importance function
has serious performance implications in the application of multilevel splitting,
whichever specific method is used. Examples 1 and 2 give some evidence of
the sensitivity of the splitting approach to such choice. Overall it is clear
that simulations following a splitting strategy are guided by the I-FUN, which
selects the directions in which the computation effort should be intensified.

In Section 3.1 it is stated that importance functions try to approximate
the true importance of the states as per Definition 11. That definition was
purposefully expressed in terms of trajectories through the states: recall that
for some simulation path running on the system model, the true importance
of state s ∈ S can be described as the probability of observing the rare event
(i.e. visiting a rare state from A ( S) after visiting s. That probability tends
to decrease with the distance, measured in number of transitions, between s
and the rare event. This is crystal clear in the case of DTMC models where
transitions have probability weights. The more simulation steps needed, the
smaller the value of the product representing the joint probability of taking
all the right transitions that lead from s to A in the fastest possible way.

Interestingly something similar happens with CTMC models. Starting
from s, at each step a race condition can deviate a simulation path from the
shortest route leading to A†. Hence the shorter such route is, the higher the

† This can be more rigorously stated studying the embedded Markov chain of the CTMC.
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chance of reaching the rare event without detours.
This analysis suggests that for both formalisms, longer paths to A mean

lower probabilities of observing the rare event. Thus in the average case for a
simulation path starting from s ∈ S, distance to A (in number of transitions)
and importance of s should be inversely related magnitudes. Therefore if one
could track or at least conjecture the trajectories leading from s to states in
A, some notion of the distance between them may be determined and used
to choose an appropriate importance for s.

Certainly the actual probabilistic weights (or rates) of the transitions
affect the importance of s too. Considerations involving these magnitudes
will be postponed however to later stages of the strategy proposed in this
chapter. The derivation of the importance function will be fully determined
by the adjacency graph inherent to the transition matrix of the model.

The core idea is simple enough: starting simultaneously from all states in
A, perform a backwards-reachability analysis on the transition system of the
model, i.e. a BFS traversing the adjacency graph using edges with reversed
directions. Each iteration of the algorithm visits a new layer of states, which
are one step further from A than the states of the previous iteration. The
successive layers of states visited in each iteration are labelled with decreasing
importance. The pseudocode is presented in Algorithm 1, where M is the
system model and s0 its initial state.

This way the length of the shortest path leading from each state into A
is computed by means of a breadth-first search of complexity O(b n), where
n is the size of the state space and b is the branching degree of the adjacency
graph. Notice albeit b ≈ n in a worst case scenario, i.e. in case of a dense
transition matrix, b is usually several orders of magnitude smaller than the
total number of states.

For every state s ∈ S, its importance f(s) is then computed as the
inversion of its distance to the nearest rare state, where the distance between
s0 and A is the biggest one considered. In that respect notice the outer loop
can finish before all states have been visited, as soon as s0 is encountered.
This is because in Algorithm 1, the initial system state is the one with the
least importance, namely f(s0) .= 0. The description of RESTART implies
this must indeed be the case, since there are no D0 events to truncate the
main trial. In general having states to which f assigns less importance than
s0 can yield little benefit. Splitting for oversampling in regions so far away
from the rare event is deemed to incur in unnecessary computation overhead,
with little or no reward to show in return.

Algorithm 1 makes two major assumptions on its inputs:
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Algorithm 1 Importance function derivation from a system model.

Input: module M
Input: rare state set A 6= ∅
g(A) ← 0
queue.push(A) {marks states in A as visited}
repeat
s ← queue.pop()
for all s′ ∈M.predecessors(s) do
if s′ not visited then
g(s′) ← g(s) + 1
queue.push(s′) {marks s′ as visited}

end if
end for

until queue.is_empty() or s0 visited
g(s) ← g(s0) for every non visited state s
f(s) ← g(s0)− g(s) for every state s

Output: importance function f : S → N

1. it expects to have a black-box access to the (reversed) adjacency graph
of M by means of the function M.predecessors : S → 2S ;

2. it expects to be provided the rare set A ( S as input.

Assumption 1 can be easily achieved, since the dynamics of finite discrete and
continuous time Markov chains are usually stored in transition matrices, from
which the adjacency graph can be straightforwardly obtained. Assumption
2 is less direct since the user input in that respect is a property query like
those of Equations (7) and (8). Some mechanism must then be provided,
to turn the logical formula expressing the rare event into a set of satisfying
states. This is covered in Section 3.3.2. With these considerations in mind a
proof of termination can be given.

Proposition 6 (Termination of the importance function derivation algorithm).
Let M be a finite DTMC or CTMC model, and A 6= ∅ the set of rare states
from the state space S of M, derived from some transient or steady-state
user query. Then, starting from inputs M and A, Algorithm 1 terminates in
a finite number of iterations.
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Proof. Since M is a finite DTMC or CTMC model, the set S is finite and so
is the adjacency graph derived from the P or R transition matrix. Dealing
with a finite adjacency graph ensures the inner for–do loop will terminate
every time, since there is a finite number of predecessors to every state.
Denote by visit the action of pushing a state into the queue. The conditional
statement inside the inner loop ensures every state is visited at most once,
and the outer loop extracts an element from the queue on each iteration.
Thus a finite S suffices to guarantee the first condition in the guard of the
outer repeat–until loop will be eventually satisfied. Since this condition is
a disjunction, the argument given ensures the outer loop will run a finite
number of iterations. 2

As a matter of fact Proposition 6 can be applied to any finite stochastic
process model M, since the memoryless property of the Markov chains was
not used in the proof. The only complication could arise from the way in
which the system transitions are expressed, but as long as the black-box
function M.predecessors : S → 2S is provided, the derivation algorithm
will terminate in a finite number of steps.

Algorithm 1 yields a function so that every simulation following a shortest
path from the current state to the rare set, will traverse a monotonically
increasing sequence of importance values. Call this the monotonicity con-
dition on the I-FUN. Nevertheless it must be highlighted that the function
is not necessarily correct, in the sense that it will not always yield the true
importance of the states of the model. That is evident since the weights or
rates of the transitions are disregarded. Take for instance a DTMC where
states s and s′ are respectively two and one transitions away from A, but
where both transitions linking s to A have probability 1, whereas the one
linking s′ to A has probability 1⁄2. Algorithm 1 will give a higher importance
to s′, which is clearly at odds with Definition 11 of true importance.

This issue can be regarded as a pitfall of the algorithm, but is in fact
effectively countered in the comprehensive approach introduced in the next
section, which automates the application of the whole importance splitting
procedure. This exemplifies a major benefit of using all-embracing strategies
to attack a problem like RES: the push-button approach we seek is certainly
convenient from a practical point of view; but more importantly, it can
balance weaknesses and strengths among the several steps involved in the
process. On top of that, automating I-SPLIT is a way to avoid mistakes
derived from misinterpretations of the subtleties of each particular splitting
technique. An erroneous implementation combined with a poor selection
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of importance function can sometimes yield incorrect estimations, as in the
next example.

Example 3: Misestimation of an incorrect RESTART.

Consider the six-state DTMC depicted below and the importance function
{(s0, 0) , (s1, 1) , (s2, 1) , (s3, 0) , (s4, 2) , (s5, 0)} on it. The initial state is
s0 and the (not actually) rare event is A = {s4}. The importance regions
are given by the single threshold L1 = 1, i.e. zones Z0

.= {s0, s3, s5}
and Z1

.= {s1, s2, s4} form the states partition to be used by multilevel
splitting.

s0 s1

s2

s3

s4

rare

s5

stop1⁄2

1⁄2

Given s5 is the stopping state, the transient probability of a simulation
path from s0 to reach the rare event before stopping is trivially γ = 1,
as also a standard Monte Carlo analysis by simulation would suggest.
Recall the RESTART estimator for transient analysis is γ̂ = M

KN0
, where

M is the number of paths reaching the rare event, N0 is the total number
of RESTART simulations started from s0, and K stands for the stacked
up splitting factor between the importance of the initial system state
and the max importance value.
Since there is a single threshold, L1, K equals the splitting performed at
L1. Also it is reasonable to assume K > 1, otherwise RESTART would
not differ from standard Monte Carlo; say e.g. K = 2.
Notice that any simulation taking the path through s3 will suffer a
truncation of all offsprings created in s1, since they move from zone Z1
into Z0 causing a D1 event. Only the original trial from level 0 is able
to survive the s1 → s3 transition. In the next simulation step, when
this trial takes the s3 → s4 transition, it moves into the rare set A and
simultaneously triggers a B1 event.
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There are two possible implementations of RESTART at this point: one
option is to attend the B1 event first; the other option is to consider first
the entrance into the rare set A. In the latter case no re-splitting is done
when the simulation path moves from Z0 into Z1, and then statistically
we would have

lim
N0→∞

M = 3
4 N0 ,

because half of the simulation paths would take the s1 → s3 transition,
and for K = 2 half of those paths will be offsprings which get truncated
upon visiting s3.
Thus applying RESTART in the way described results in the erroneous
estimate γ̂ ≈ 3/4N0

2N0
= 3/8 6= γ. Notice that the gap between γ̂ and the

real transient probability γ is exacerbated by increasing the splitting
value. 2

There are two issues whose conjunction lead to a wrong RESTART es-
timate of P( ¬ stop U rare ) in Example 3. First, some simulation paths
moved from Z1 into the lower importance zone Z0, despite they were getting
closer to the rare event (in particular the monotonicity condition does not
hold for the importance function proposed). Second, the implementation of
RESTART attended entrance into A before splitting by the B1 event.

In an ad hoc approach, still assuming a perfect implementation of the
splitting technique of choice, there remains the issue of the importance
function. Merely using an I-FUN without the monotonicity condition does not
suffice to produce the wrong estimate in Example 3. Even so, any function
not preserving such condition may incur in high inefficiencies. That is shown
in the example above in the splitting-truncation-resplitting of a simulation
following the s1 → s3 → s4 trajectory. Theoretically this is quantified for
RESTART in the fV factor from Section 2.7.

In simple systems like the above it seems trivial to ensure the monotonicity
condition by any ad hoc proposal. Yet the complexities of the model and
definition of the rare event in real life situations tend to complicate matters.
For instance there are system where a failure can be triggered by different
configurations of the components, not necessarily related among them. In
such situations splitting may take advantage of layering the state space in a
way where the rare event is not only at the highest importance value.

Automatic techniques like Algorithm 1 guarantee the resulting impor-
tance function will have the desired properties. Properly embedded in the
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comprehensive approach of the following section, this can avoid estimation
issues like the one illustrated in Example 3.

3.3 Implementing automatic I-SPLIT

Counting with an algorithm to derive the importance function is a first major
step in the direction of automating the application of multilevel splitting, yet
it does not suffice. With few exception these techniques require also to choose
the number of thresholds and their exact importance value. Moreover fixed
splitting approaches need a selection of the split to perform at each threshold,
and fixed effort needs an analogous selection of the effort to dedicate on each
importance level.

This section presents another contribution of the thesis: an automatable
strategy to apply I-SPLIT for system analysis by RES. This includes a
framework for system modelling and specification of the user query, an
algorithm to select the thresholds, and automatable execution of simulations
using splitting techniques to estimate an answer to the query.

3.3.1 Modelling language

In spite of their mathematical accuracy, Definitions 2 and 3 of finite Markov
chains fail to provide a user-friendly formalism for describing probabilis-
tic/stochastic processes. That is because an explicit specification of S is
impractical. Realistic models can easily have thousands of different config-
urations which would need to be represented as the set S of opaque states
[Har15].

A typical solution is adding an abstraction layer by means of typed
system variables. For the scope of this thesis it suffices to consider integral
variables, where Booleans can be encoded as {0, 1}-valued integers (though
for notational purposes we might use the symbols > and ⊥ to denote the
logical true and false respectively), and disregarding variables which take
values from dense sets. In such setting, the set of all possible valuations of
the variables considered conforms the state space of the Markov chain. To
preserve finitude these variables need to be granted a bounded number of
possible values.

Definition 13 (Symbolic states). Let {vi}mi=1 be a sequence of bounded integral
variables, i.e. each vi can take values from some finite non-empty set Vi ( Z.
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Then a vector (v1, v2, . . . , vm) ∈ Zm of specific valuations of the variables will
be called a symbolic state.
Definition 14. Given a bounded integral variable v taking values from V , the
range of v is #v .= |V |, i.e. the number of different values v can take.
Definition 15 (Concrete states). Say the state space S of some finite (discrete
or continuous time) Markov chain M corresponds to the set of all possible
valuations of the bounded integral variables {vi}mi=1. Then each state s ∈
S = {sj}Mj=1 will be referred to as a concrete state of M, where M is the
amount of feasible distinct valuations, viz. M = ∏m

i=1 #vi.
Notice a symbolic state is an m-dimensional vector expressed in terms of

variables, and a concrete state lies in the (flat) finite set S. Definitions 13
to 15 establish an implicit bijection between the symbolic state space of a
sequence of variables and the concrete state space of the Markov chain M for
which they were defined. It will be said that M is bond to variables {vi}mi=1
and vice versa.

In Examples 1 and 2 from Section 3.1 the rare and stopping events, viz.
the states sets A and B, were defined in terms of some system component,
namely an overflow in a queue. This naturally speaks of a particular valuation
of the variable representing the number of customers in the queue. However,
sets A and B must be declared in terms of the atomic propositions AP and
the labelling function Lab defined on top of S. Clearly a more practical and
variable-related way of expressing them is desirable.

In general and unless noted otherwise, we will assume that the rare and
stopping sets will be declared by the user as symbolic states. The bijection
established by the previous definitions ensures this defines unique A and B
subsets of concrete states in S. For instance in the tandem queue example
where the rare event was defined as q2 > L, the concrete states labelled with
rare will be those corresponding to all symbolic states where the variable
q2 has a valuation equal to or greater than L.

There remains the issue of the model transitions. Some efficient abstract
data type can be used to represent the sparse matrix corresponding to the
probabilities in P or the rates in R from Definitions 2 and 3. Typical choices
are CSR and CSC sparse representations, and MTBDD. Representation
efficiency notwithstanding, it is impractical to request such input directly
from the user. Even in very sparse cases the size of the matrix will most
likely be too large to resort to an explicit declaration.

Several abstract languages have been devised to specify the dynamics of
a process. These typically allow to speak directly in terms of symbolic states,
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i.e. of certain variables valuations. Edges are then defined at the abstraction
level of variables, each corresponding to one or more transitions at the lower
level of concrete states.

Definition 16 (Edges). For Markov chain M bond to variables {vi}mi=1, let
pre be a Boolean condition on the variables. Also for k 6 m and indices i`
taking disjoint values in {1, . . . ,m}, consider arithmetic expressions {exi`}k`=1
involving these variables. Assume that expression exi` results in valid values
for variable vi` , and denote pos .= ∧k

`=1(exi`). Then pre → pos is an edge
on M, where pre is the precondition or guard of the edge, and pos is the
postcondition or set of actions of the edge.

Intuitively, the guard of an edge tells when its actions can be applied.
Notice several transitions at the level of S can be covered by a single edge,
since a guard can speak of a range of valuations. For instance the edge

(0 < q1 < L ∧ arrival) → (q1 + 1)q1

represents transitions whose originating state corresponds to the variables
valuation arrival ≡ > and q1 ∈ {1, . . . , L − 1}. For L > 2 that is strictly
more than one transition at the level of S. The sub-index decorating the
postcondition is used above to signify that the value resulting from the
expression q1 + 1, for the current value of q1, will be applied to variable q1.

To describe a DTMC or CTMC model, Definition 16 cannot be used as
it was given because it lacks a key component: the probabilistic weights of
the transitions from P and the transition rates from R. This is covered in
different ways by the modelling languages available in the literature. Here
the PRISM language is adopted since: it has a clear and relatively simple
syntax; it is a de facto standard in the field of probabilistic model checking;
and the tool implementing the derivation algorithm from the previous section
was developed as a modular extension of the PRISM tool.

Code 3.1: PRISM syntax example for a DTMC
1 dtmc
2 const double p = 0.4;
3 const double q = 0.001;
4 module Light
5 is_on: bool init false;
6 [] !is_on -> ( p): (is_on’=true)
7 + (1-p): true; // i.e. do nothing
8 [] is_on -> ( q): (is_on’=false)
9 + (1-q): true;

10 endmodule
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An extensive description of the syntax of the PRISM language can be
found in the “Manual” section of its webpage. A toy example is shown in
Code 3.1 which models a light switch in a discrete-time environment. When
it is off the light has probability p of being turned on. Conversely the light
is turned off with probability q when it is on. The semantics attached to
the PRISM language syntax in terms of DTMC and CTMC can be found in
David A. Parker’s Ph.D. thesis, [Par02].

From now on, references to the concrete level of a Markov chain will be
implicitly speaking of S, P or R, and transitions between concrete states.
Conversely, references to the symbolic level will be referring to the variables
and edges of some high-level description (say, using the PRISM input language)
of the Markov chain. So for instance the symbolic level of the Light model
from Code 3.1 involves e.g. the variable is_on and the edges from lines 6 to
9, whereas the concrete level refers to the DTMC which gives semantics to
this PRISM model.

Some implementation decisions shape the way in which DTMC and CTMC
models are expressed in PRISM. Examples are: how overlapping guards in
several edges are interpreted; the way in which parallel execution is handled
when the model is composed of many modules; and how to synchronise the
execution of such modules. All details relevant for this thesis are quickly
reviewed in the next practical examples.

Example 4: Single queue DTMC model.

Consider a buffered server operating in a discrete time environment. At
each time tick the system will receive a new packet with probability
lambda, enqueueing it in the buffer q1. In turn, when the queue is not
empty, at each time tick the server will process and dequeue a single
packet with probability mu1. Notice arrival and processing could happen
simultaneously during the same tick, resulting in an unchanged state
of the queue once the time tick has elapsed. A model of this process is
expressed next using the PRISM language.

Code 3.2: PRISM discrete queue model
1 dtmc
2
3 const int c = 12; // Capacity of the queue
4 const double lambda = 0.1; // Probability of packet arrival
5 const double mu1 = 0.14; // Probability of packet processing
6

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
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7 module DiscreteQueue
8
9 q1: [0..c] init 1;

10
11 [] (q1=0) -> ( lambda): (q1’=q1+1)
12 + (1-lambda): true;
13 [] (0<q1 & q1<c) -> ( (lambda)*( mu1)): true
14 + ( (lambda)*(1-mu1)): (q1’=q1+1)
15 + ((1-lambda)*( mu1)): (q1’=q1-1)
16 + ((1-lambda)*(1-mu1)): true;
17 [] (q1=c) -> ( (1-lambda)*mu1): (q1’=q1-1)
18 + (1-(1-lambda)*mu1): true;
19 endmodule

Observe how each possible valuation of variable q1 is treated in the three
edges. The three corresponding guards form a partition of the state space.
If some value was not covered, it would result in unspecified behaviour
(a deadlock), since the model could not take any action upon reaching
such valuation. If instead two guards overlap, the model would show
nondeterministic behaviour since two potentially different actions (i.e.
two different transitions) could be performed from the same system state.
The PRISM tool recognises these undesired situations and warns the user
about their presence in the model.
Though simple, this model can be analysed for rare behaviour. For
instance one could study the probability of reaching the maximum queue
capacity, starting from a non-empty state, before all packets in the queue
get processed by the server. This transient analysis can be forced into
the rare event scope simply by fiddling with the probabilities lambda and
mu1 and the queue capacity c. 2

Each edge in a PRISM DTMC model specifies all the transitions outgoing
the states which satisfy its guard. Since the transitions outgoing a state in a
DTMC are probabilistic, their weights must add up to one. As mentioned in
Example 4, when two guards from two edges overlap, i.e. if both can become
true for some valuation of the variables, nondeterminism arises. Specifically,
PRISM interprets such situation as two disjoint sets of probabilistic transitions
outgoing the states which satisfy these guards. A simulation path would
have to choose between those sets, with no hint regarding which of them to
follow. This is nondeterministic behaviour, and falls outside the scope of the
DTMC formalism. Summarizing, a PRISM DTMC model cannot have edges
whose guards overlap.

The situation is different in the stochastic scenario, since race conditions
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naturally express the existence of several unrestricted (other than having a
positive rate) transitions leaving a state. Therefore, a PRISM CTMC model
can have edges whose guards overlap. The concrete states satisfying multiple
guards would simply resolve the resulting race condition, performing the
transition which fired first and discarding the others.

As defined so far, a Markov chain models the sequential evolution of
a probabilistic or stochastic process. In reality, however, most hard- and
software systems are not sequential but parallel in nature [BK08, sic]. A
process can be defined by the parallel execution of its components, also called
modules. Notice the module and endmodule keywords in Codes 3.1 and 3.2.
The PRISM language allows the definition of several modules, and the process
resulting from the parallel execution of all of them is referred to as the global
system model.

The individual modules can be totally independent during the parallel
execution of the global system model, evolving autonomously, or can commu-
nicate and cooperate in some way. The first option is called interleaving and
for the second option there are many alternatives, like shared variables and
channel systems [BK08]. A broadcast variant of the handshaking mechanism
will be used along the thesis, where modules execute certain transitions
synchronously and interleave execution of all other transitions.

Handshaking introduces a new type of element, synchronisation labels or
actions, used by the modules to communicate among them. These actions
are the means by which parallel components take a transition in synchrony.
They are closely related to the actions set A from Definitions 1 and 4 of LTS
and SA, though here they will be used to synchronise Markov chains.

In the PRISM language each edge in a module is labelled with an action
wrapped in square brackets. If the brackets are empty, the special τ (tau)
transition is assumed, which does not synchronise and implies an interleaving
edge. That is the case for all edges in the PRISM model from Code 3.2.
Oppositely, when two or more edges from different modules share a label
different from τ , they must be executed synchronously or not at all. This is
illustrated in the following example.

Example 5: Tandem queue CTMC model.

Recall the Markovian tandem queue from Example 2. It was introduced
in a continuous time setting and can henceforth be modelled as a CTMC;
Code 3.3 is a PRISM model of it. The system is represented as three de-
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pendent modules, Arrivals, Queue1, and Queue2, which run parallelly and
synchronise through the action labels arrival, service1, and service2.

Code 3.3: PRISM tandem queue model
1 ctmc
2
3 const int c = 8; // Capacity of both queues
4 const int lambda = 3; // rate(-> q1 )
5 const int mu1 = 2; // rate( q1 -> q2 )
6 const int mu2 = 6; // rate( q2 ->)
7
8 module Arrivals
9 // External packet arrival

10 [arrival] true -> lambda: true;
11 endmodule
12
13 module Queue1
14 q1: [0..c-1] init 0;
15 // Packet arrival
16 [arrival] q1<c-1 -> 1: (q1’=q1+1);
17 [arrival] q1=c-1 -> 1: true;
18 // Packet processing
19 [service1] q1>0 -> mu1: (q1’=q1-1);
20 endmodule
21
22 module Queue2
23 q2: [0..c-1] init 1;
24 lost: bool init false;
25 // Packet arrival
26 [service1] q2<c-1 -> 1: (q2’=q2+1);
27 [service1] q2=c-1 -> 1: (lost’=true);
28 // Packet processing
29 [service2] q2>0 -> mu2: (q2’=q2-1);
30 endmodule

Consider the external arrival modelled in the module Arrivals, line 10.
For the arrival to happen, action arrival is broadcast for synchronisation
with the other modules. Since Queue2 only reacts to actions service1
and service2, it ignores the issue altogether. Module Queue1 however
does synchronise on the arrival action, so the arrival will be allowed iff
one of its edges in lines 16 and 17 is enabled. The guards of these edges
were chosen so that at all times, exactly one of them will be enabled.
Hence the external arrival can always take place, which is consistent with
a realistic queueing system.
In this way, the packet arrival is modelled via a synchronous execution
of the corresponding arrival-edges in both modules. An analogous
mechanism is set in motion when the server in the first queue processes
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a packet. Then the action is service1 and the modules participating in
the synchronous transition are Queue1 and Queue2. No synchronisation
uses action service2; it could thus be replaced with τ , i.e. changing
[service2] for [ ] in line 29, without affecting the global behaviour.
This Markovian model of a tandem queue presents several opportunities
for the study of rare behaviour. From the transient point of view, it is
interesting to know which is the probability of losing a packet in the
second queue due to an overflow (indicated by lost’=true), before the
server processes all packets and q1 evaluates to zero. From the steady-
state point of view one can be interested in the long run probability of
observing such packet loss. The rarity of these events can be tuned with
the system parameters expressed as constant integers in Code 3.3.
As last remark notice that in the way they are presented and disregarding
the indicator variable lost, modules Queue1 and Queue2 are exact copies
modulo renaming of variables and synchronisation actions. More queues
could be added in the same fashion, extending the model to an n-queues
tandem Jackson network for arbitrary n ∈ N. 2

In the PRISM language an action can also be blocking, when one of the
modules taking place in the synchronisation does not have an enabled guard.
Say for instance line 17 from Code 3.3 (in module Queue1) is removed. When
q1=c-1 no arrival would then be allowed, since Queue1 synchronises on label
arrival but the single arrival-edge left would have a disabled guard. Thus
transitions in the module Arrivals would be blocked.

This inter-module synchronisation scheme also allows race conditions at
the level of the the global system model, but only in interleaving transitions.
When two guards from different modules are enabled and the edges do not
synchronise, a race condition is formed and resolved. The values sampled
from the exponential distributions involved will determine which one takes
place, just like in the intra-module case

To illustrate the above, consider the initial state of the tandem queue
from Example 5. Notice the single guard in the Arrivals module is always
satisfied. Also, since initially q2 is assigned the value 1 in Queue2, the last
edge of that module (line 29) is enabled as well. Hence two transitions are
enabled in the initial global state of the system model: one corresponding to
an arrival in module Arrivals, and another one corresponding to a packet
processing in module Queue2. That is a race condition at global scope since
both edges do not synchronise.
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A last important matter to consider about the PRISM language is the
resulting rate of synchronising transitions. For interleaving edges executed
without synchronisation, the rate of the underlying transitions at concrete
level is the rational number preceding the colon in the edge. That is e.g. the
case of mu2 in line 29 of Code 3.3.

When instead several edges from different modules are executed syn-
chronously, the product of their rates will be the rate of the underlying
transition in the global system model. Like in Example 5, this is commonly
dealt with by setting the desired rate of the global transition in the edge of a
single module. All the synchronising edges of all the other modules are then
given rate 1, so the resulting product will be the desired global rate.

3.3.2 User query specification

Recall there are two angles from which rare events are studied in this thesis:
transient and steady-state analysis. Equations (7) and (8) in Section 2.5.1
already provide formulae from temporal logics to express queries regarding
respectively transient and steady-state behaviour.

Yet those expressions assume an explicit representation of the rare and
stopping sets of states, A and B, or at best in terms of their characterizing
sets of atomic propositions. Given that A and B can be defined at symbolic
level, it is also reasonable to expect that expressions involving variables, and
not atomic propositions or concrete states, will be the means to query the
probability values sought.

The property specification language of the PRISM tool subsumes several
probabilistic temporal logics, including PCTL and CSL. Besides, at top level
it offers the quantitative operators P=? and S=? related to those logics, which
respectively yield a numerical value regarding behaviour of transient and
steady-state nature. Namely, these operators return “the probability” of the
set of states which satisfy the succeeding subformula, thus fitting smoothly
in the current framework.

To perform transient analysis, the user will specify the query

P=? [ ¬stop U rare ]

where both stop and rare are Boolean expressions involving literals, constants,
and variables defined in the PRISM model of the system. Expression stop
identifies the stopping states, which truncate the simulation paths reaching
them. Expression rare identifies the rare event of interest.
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Steady-state analysis is instead requested with the query
S=? [ rare ]

for the same definition of rare. Interestingly, even though CSL was designed
to study systems in a continuous time environment, the long run query above
can be also used with DTMC models. It will yield the probability of visiting
the states satisfying rare, once the system is in equilibrium.

Example 6: Rare event user queries for the tandem queue.

Resuming the study of the tandem queue, suppose the user wants to
know how likely is it to lose a packet in Queue2 before it empties. Such
loss involves the server of the first queue processing and sending a packet
to a fully occupied second queue, viz. when q2=c-1. Making use of the
indicator variable lost, the property query to perform the corresponding
transient analysis is:

P=? [ q2>0 U lost ],
which formally asks for “the probability of not observing an empty second
queue, until a packet is lost in Queue2.”
Recall that initially there is one packet stored in q2, which is necessary
to keep the initial state out of the stopping set B. Practically this means
that without the “init 1” directive in the definition of q2 (line 23 of
Code 3.3), all simulations would stop as soon as they begin.
If instead the user is interested in the long run probability of losing a
packet in Queue2, the query should be:

S=? [ lost ].
Since the tandem queue as described and modelled in Examples 2 and 5
is an ergodic system†, this property is in fact oblivious of the initial value
of q2. 2

3.3.3 Selection of the thresholds

The two previous sections provide the framework to specify the model and
the rare event queries. All complies with the PRISM input language, and

† The underlying Markov chain is ergodic because all its states are aperiodic and positive
recurrent—see e.g. [Tso92].

https://en.wikipedia.org/wiki/Ergodicity#Markov_chains
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this tool has a built-in simulation engine, so analysis by the standard Monte
Carlo approach from Section 2.3.2 could be directly performed.

Using importance splitting is not so direct, due to the extra information
this technique requires. Section 3.2.3 explains how to automatically derive
the importance function from the user input just described, but that is not
all. Most splitting strategies require choosing the threshold values, at which
either path-cloning will take place (e.g. for fixed splitting), or each stage of
the simulation starts and ends (e.g. in fixed effort).

One could simply use each importance value as a threshold, e.g. splitting
each time a simulation visits a state with higher importance than the previous
one. Obviously this has big chances of incurring in a large computational
overhead, which could easily render useless any gain derived from the use
of splitting. Choosing every other importance value as a thresholds sounds
more reasonable, but it is again nothing else than a blind choice.

We acknowledge two solutions to this problem: selecting the thresholds
ad hoc, tailored for the specific system under study, or using an algorithm to
analyse (e.g.) the automatic I-FUN produced by Algorithm 1, trying to derive
the thresholds as well. In general and following the automatable approach of
the whole thesis, it is desirable to choose the thresholds adaptively, considering
the structure of each particular model.

From the popular I-SPLIT implementations mentioned at the end of
Section 2.5.1, Adaptive Multilevel Splitting stands out due to its “dynamic
thresholds discovery.” Recall this technique and its successor, Sequential
Monte Carlo, run simulations on a system where only the importance of
the states is known. By means of a statistical analysis of the maximum
importance reached by each simulation path, the values of the thresholds (or
its analogous in that setting) are incrementally discovered from the initial
state up to the rare event.

Hence, to carry out the desired fully automatic application of I-SPLIT the
following implementation options arise:

1. using Adaptive Multilevel Splitting (or Sequential Monte Carlo) as stan-
dard splitting technique, discarding the need of thresholds altogether;

2. extracting the algorithmic idea of these approaches to find the thresh-
olds, and use them with any other splitting technique.

RESTART was selected as default splitting algorithm due to its nice
practical properties—see Section 2.6. Moreover, both Adaptive Multilevel
Splitting and Sequential Monte Carlo would need to be generalised (if possible)
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if we wish to perform steady-state analyses. Therefore we chose the second
approach; the pseudocode for the selection of the importance values to use
as thresholds is presented in Algorithm 2. It takes the following parameters:
M - the system model;
f - the importance function;
n - the number of independent simulations launched per iteration;
k - the number of successful simulations among the n launched;
m - the number of discrete events to generate for each simulation.

Besides, the algorithm uses the following internal variables:
sim - an array to store states with the max importance of each simulation;
T - a queue to store the importance values selected as thresholds.
Routine M.simulate_ams(s, n,m, f, sim) in Algorithm 2 launches n in-

dependent simulations from state s, and stores in the array variable sim
the states embodying the maximum importance values observed in each
simulation (n in total). Sorting these states in increasing order according
to their importance value leaves in the (n− k)-th position of sim the state
embodying the (n− k)-th n-importance-quantile, which may become a new
threshold.

The numerical inputs of the algorithm, k, n,m ∈ N, must be selected
ad hoc by the user. Heuristics based on the nature of the importance function
f and the model M are easy to implement and have been used in the
software tool developed. According to our empirical observations, as long as
the bounds m ∈ [103, 105], n ∈ [102, 104], and k ≈ n/sm are respected, where
sm is the maximum splitting value on any threshold, those values only have
a moderate impact on the efficiency of the algorithm.

This adaptive selection of thresholds (plus the splitting factors) provides
all complementary information needed by an I-FUN, ad hoc or automatic. In
particular, Algorithm 1 exploits the structure of the adjacency graph of a
model M to derive the function, but disregards its probabilistic/stochastic
nature. The paths generated by M.simulate_ams( · · ·) in Algorithm 2 do
consider such information, in a state space already labelled with importance.
Thus the resulting thresholds, which are the most important metadata used
by RESTART during simulations, reflect the full behaviour of the model.

There are a few caveats with the use of this approach in the setting of
the thesis, related to the way in which Adaptive Multilevel Splitting was
introduced by Cérou et al. in [CG07]. They are discussed next.
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Algorithm 2 Selection of thresholds with Adaptive Multilevel Splitting.

Input: module M
Input: importance function f : S → N
Input: simulations setup k, n,m ∈ N>0, k < n

Var: sim[n] Type: array of states
Var: T Type: queue of integers {the thresholds}
s ← M.initial_state()
T.push(f(s))
fail ← ⊥
repeat
M.simulate_ams(s, n,m, f, sim)
sort(sim, f)
s ← sim[n− k]
if T.back() < f(s) then {T.back() does not dequeue}

T.push(f(s)) {new threshold: (n− k)-th n-quantile}
else

fail ← >
end if

until T.back() = max(f) or fail
for i← T.back() + 1 to max(f) do

T.push(i) {unreached importance values become thresholds}
end for

Output: queue with threshold values T

Continuous vs. discrete spaces
The proof that Adaptive Multilevel Splitting yields an optimal estimator is
based on a continuous state space and importance function on them [CG07].
This means that in the original algorithm, thresholds can be chosen arbitrarily
close to each other, which is one of the hypotheses used to ensure optimality.

In the scope of this thesis state spaces are finite, and even though optimal-
ity is not a major concern, the continuity hypothesis of Adaptive Multilevel
Splitting may have repercussions regarding termination of the idea behind
Algorithm 2. More precisely, simulation paths tend to go down—in terms
of importance—as the rarity of the states increases. In particular it could
happen that most or even all simulations launched by M.simulate_ams( · · ·)
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visit states whose importance is strictly below the importance of the starting
point at state s.

If more than n − k simulations go down in the way described above,
the (n− k)-th n-quantile from sim will not be above the previously defined
threshold. An iteration of the repeat–until loop in Algorithm 2 would then
fail to provide a new value to store in T.

To remedy such situations it was decided to consider all unreached
importance values as thresholds. This strategy is coherent: if that many
simulations go down without visiting higher importance states, then they
are dwelling in a very rare zone, where the chances of observing the next
importance value are less than k/n. Thus the best that can be done is to
regard such next importance value as a threshold. Notice this is exacerbated
by the discreteness of the sates and the importance function.

In Algorithm 2 the Boolean variable fail is used to identify and defuse
the cases when the (n− k)-th n-quantile does not yield a higher threshold
value. This provides enough conditions to prove termination.

Proposition 7 (Termination of the thresholds selection algorithm). Let M
be a finite DTMC or CTMC model, f an importance function with image
on the natural numbers, and k, n,m ∈ N, k < n. Then, from those inputs,
Algorithm 2 terminates after executing a finite number of instructions.

Proof. The final for–do loop has a finite range and a single constant-time
instruction in its body. Therefore it will terminate, and it suffices to prove
termination of the main repeat–until loop. Each of the n simulations launched
by theM.simulate_ams( · · ·) routine generatesm discrete events and finishes.
The sorting routine also performs its task using a finite amount of instructions.
Thus it only remains to prove the guard of the loop is satisfied in a finite
number of steps. If an iteration does not yield a state whose importance
is higher than the last selected threshold, fail is set to > and the guard
of the loop is satisfied. Otherwise the conditional inside the loop ensures
every call to M.simulate_ams( · · ·) in every iteration of the loop yields a
state with an importance higher than the last value stored in T. Since S is
finite, so is the codomain of f , and therefore the number of distinct values
that can be considered in this way is finite. Hence, in a finite number of
iterations the value max(f) will be stored in T, and the guard of the loop
will be satisfied. 2

Just like with Proposition 6 for the I-FUN derivation algorithm, Proposi-
tion 7 is oblivious of the memoryless property. That means Algorithm 2 can



90 MONOLITHIC I-SPLIT

actually be used with any time-homogeneous stochastic process.
In spite of its coherence, the termination strategy used in Algorithm 2

is quite harsh. There are milder alternatives to the Boolean variable fail,
like using a counter of failures and a predefined tolerance bound. Each time
the condition T.back() < f(sim[k]) fails, the loop would be repeated for
the same T and s, but incrementing the failures counter and the effort of
M.simulate_ams( · · ·) (e.g. increasing m or n). If the counter reaches the
tolerance bound, then the repeat–until loop is broken as in Algorithm 2.
On the other hand, if a new threshold is found, the counter and any other
modified variables such as m or n can be reset to their original values.

The importance of the rare event
Another issue in the current setting w.r.t. the original theory from [CG07]
is the importance value of the rare states. In Adaptive Multilevel Splitting
the rare event is defined as the states of a strong Markov process above
certain barrier M , and the algorithm attempts to reach these states. Such
setting coincides with the one from Section 2.5.1 where A = En, i.e. when
f maps all rare states to the highest importance values, which is the case
of the automatic I-FUN. However some systems do not fit naturally in this
characterization, as it will be shown in Section 3.6.

An easy workaround is to aim at reaching the maximum importance value
instead of reaching a rare state. That is exactly the approach of Algorithm 2.
There is no check considering the user definition of the rare event; all that
matters is the importance distribution of f .

The drawback of this approach is that in some cases, max(f) represents an
extremely rare situation, and the “more common” rare events are represented
by states whose importance is a fraction of that value. Then Algorithm 2
may take a very long time to converge, trying to reach max(f), in what can
be considered a waste of computational effort. Because if there are rare states
with much less importance than max(f), most observations of the rare event
will involve these states, and not those realizing the maximum value of f .
This issue is further discussed in Sections 3.5 and 3.6.

3.3.4 Estimation and convergence

Together with Algorithm 1 to derive the automatic I-FUN, and letting momen-
tarily aside the particular splitting technique to use, Sections 3.3.1 to 3.3.3
supply enough mechanisms to implement automated multilevel splitting sim-
ulations. A simulation is the execution of any I-SPLIT technique as introduced
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in Section 2.5.2, e.g. a Fixed Effort run to study some transient property, or
a long run of RESTART in batch means to analyse steady-state behaviour.

Each simulation yields a point estimate γ̂i for the probability γ of the
rare event. The next step is using the statistical theory from Section 2.3.3 to
analyse the sample {γ̂i}Ni=1 and produce the desired interval estimate around
the mean of the data, γ̂ .= 1/N

∑N
i=1 γ̂i. The intention is to provide the user

with a reliable guess of γ, where reliability is quantified in terms of confidence
coefficient and interval precision.

The confidence interval from Definition 5 and Equation (6) in Section 2.3.3
assumes the population mean is estimated without information about the dis-
tribution of the samples. Since the variance σ2 is unknown and approximated
with the estimator S2

N for a sample of size N , the Central Limit Theorem is
used with the Student’s t-distribution to guarantee

P

µ ∈
X ± tα

2

√
S2
N

N

 ≈ 1− α (12)

where tα is the α-quantile of the Student’s t-distribution, X = γ̂ is the mean
value of the random sample {Xi}Ni=1 = {γ̂i}Ni=1, and µ = γ is the unknown
population mean.

However, when a transient analysis is performed, each path will either
find a rare state or get prematurely truncated upon encountering a stopping
state. Thus each simulation can be regarded as a Bernoulli trial, where
observing the rare event means success.

In such setting, running N simulations is equivalent to performing an
〈N, γ〉-Binomial experiment, where the variance of each Bernoulli trial is
characterised by the expression σ2 = γ(1 − γ). Using S2

N = γ̂(1 − γ̂) to
estimate the variance of the population, eq. (12) then yields the CI

γ̂ ± tα
2

√
γ̂(1− γ̂)

N
. (13)

For some confidence criteria provided by the user, i.e. confidence coefficient
α and interval width d, this suggests the following approach to generate the
CI: increasingly generate samples, viz. simulation paths, computing each
time the value of tα

2

√
γ̂(1− γ̂)/N ; as soon as it falls below d/2, the desired

criteria is satisfied and estimation finishes.
Recall however that the model and property queries considered are in

a rare event regime, where asking for relative error is more robust than
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requesting some width d fixed a priori. Moreover the expression of eq. (13)
is unreliable for the extreme cases when γ ≈ 0 and γ ≈ 1. There are more
robust estimators, like the Wilson score interval [Wil27], which cover such
cases with better accuracy.

With those considerations in mind, this approach based on the transient
nature of the simulations provides a simple convergence decision mecha-
nism. Unfortunately, its apparent suitability notwithstanding, it cannot be
dependably used in general as stopping criterion.

The problem stems from the use of multilevel splitting. When simulations
are standard Monte Carlo, each sample has a success/failure outcome. Instead
when using e.g. RESTART with stacked splitting factor K, the result can
take any value in {0, 1/K, 2/K, . . . ,K − 1/K, 1} or even be unbounded—see
Section 2.6. Therefore, and in general for any splitting technique, the random
sample {Xi}Ni=1 does not necessarily follow a 〈N, γ〉-Binomial distribution†.

For the estimation approach followed in this work, the complication
described above materialises in a premature stop: the convergence criterion
deems the current data set sufficient, when in truth more simulations were
needed to build an interval containing γ with the desired confidence.

The problem of real parameter coverage is one of the most difficult to
solve in RES [GRT09]. One strategy is to use the standard CI expression of
eq. (12), based on the Central Limit Theorem which makes few assumptions
on the random sample. Notice anyway that in a typical scenario where the
distribution of the simulated paths is unknown, the sample size required to
satisfy the confidence criteria can only be discovered a posteriori. This can
be dangerous when the simulation budget is fixed.

This analysis has certain correspondence with the use of a relative error
to define the desired interval width, since that also implies simulating first
and estimating later, with no foreseeable notion of termination. Reijsbergen
et al. study analogous complications in [RdBS16], when importance sampling
is used for hypothesis testing.

Prioritising dependability over speed of convergence, this thesis uses the
expression from eq. (12) to build the CI in both transient and steady-state
analysis. Replacing the standard statistical nomenclature with their RES
counterparts, the resulting equation applied for estimations is

P

γ ∈
 γ̂ ± tα

2

√
σ̂γ̂
N

 ≈ 1− α (14)

† Similar issues are known to affect importance sampling [RdBS16].
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where σ̂γ̂ is the empirical variance of the sample {γ̂i}Ni=1 (see eq. (4)), and
tα

2
is the α/2 quantile of the Student’s t-distribution.
The conventional lower boundN > 30 is imposed, after which comparisons

for convergence start. Each new sample (viz. simulation result) updates the
value of the estimate γ̂ and thus also of the desired interval width, by means
of the relative error approach. Each sample updates also the empirical width
of the computed CI following eq. (14). When this empirical width becomes
narrower than one derived from γ̂ as relative error, convergence is assumed
and the resulting CI is returned.

Remarkably, this estimation strategy is equivalent to the “Chow-Robbins
test” from [RdBS16], reported in that work as the only alternative which can
yield a correct estimate regardless of the true sample distribution. The price
to pay is not being able to foretell how many simulation paths are needed to
satisfy the user’s confidence criteria.

3.4 Tool support

We developed the software tool BLUEMOON, implementing the automatic
approach to importance splitting described in the previous section. It was
written in C++ and Java as a modular extension of the probabilistic model
checker PRISM [KNP11], development version 4.3, which runs on the Java
Virtual Machine.

The BLUEMOON tool is free and open software, released under the terms
of the General Public License (GPL v3). The source code can be downloaded
from the homepage of the tool, located in the webpage of the Dependable
Systems Group at http://dsg.famaf.unc.edu.ar/tools.

It is important to highlight the prototypical nature of BLUEMOON, which
was devised to validate the theory presented in this chapter. The desire for
empirical validation motivated the choice of continuous and discrete time
Markov chains. Many studies already exist for this kind of systems, which
facilitated the task of reproducing known results.

Notwithstanding the above, and as discussed in Sections 3.2.3 and 3.3.3,
the algorithms and techniques introduced do not make any assumption of
memorylessness. They can thus be employed to study more general stochastic
processes, as we will show in Chapter 4.

As an extension of the PRISM tool, BLUEMOON reads DTMC and CTMC
models described in the PRISM input language, and property queries expressed
in the PRISM property specification language—see Sections 3.3.1 and 3.3.2.

http://www.gnu.org/licenses/gpl.html
http://dsg.famaf.unc.edu.ar/tools
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The model and queries are written down in a text file and the tool is
invoked in the command line, passing as input the file and the options
--rarevent <type> <strategy> and --rareconf <conf> <prec>. Arguments
are mandatory; their syntax and semantics is as follows:

<type> Specifies whether the analysis is transient or steady-state, which
is respectively indicated with the values tr and ss.

<strategy> Specifies which kind of simulations shall be run. Its value must
be one of the following:

nosplit to use the standard Monte Carlo approach;
auto to use the importance splitting approach with the auto-

matic importance function, derived from the user model
and query using Algorithm 1;

adhoc to use importance splitting but with an ad hoc importance
function, which requires the user to define it.

<conf> Specifies the confidence coefficient desired by the user and must
thus be a (rational) number in the open interval (0, 1).

<prec> Specifies the interval precision, and can be either a fixed rational
number, or a percentage with the format p% to use the relative
error approach, where p ∈ {1, 2, . . . , 100} is interpreted on the
full width of the interval.

For instance the line

>_ prism-bm model.prism --rarevent tr auto --rareconf .9 20%

invokes the tool (identified by the command prism-bm) on the PRISM model
file model.prism, to run a transient analysis using importance splitting with
the automatic I-FUN derived by BLUEMOON, requesting a confidence level of
90% and a relative error of 10%—the empirical width of the CI must be at
most 20% of the estimate, i.e. smaller than 0.2× γ̂—see Definition 6.

There is also a --rareparams option which takes as argument a comma-
separated list of customizations, like the splitting to use, the confidence
interval building strategy, a wall-clock execution timeout, etc. One of its
most relevant uses is to define the importance function when the ad hoc
approach is selected. The function must be an integer-valued arithmetic
expression on the variables and constants of the model. For instance the
command
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>_ prism-bm model.prism --rarevent ss adhoc \
--rareconf .95 20% \
--rareparams "timeout=5,ifun=accˆ2-5*q2"

runs a steady-state analysis of model.prism, using I-SPLIT with the ad hoc
importance function which subtracts five times the value of q2 from the
square of acc. Both acc and q2 should be defined in model.prism, either
as constants or variables, and the expression must evaluate to an integer.

The ad hoc importance function can also be defined as a PRISM formula
inside of the model. The example above is equivalent to appending “formula
importance = accˆ2-5*q2” as new line to the model.prism file, and then
executing the same command but with timeout=5 as only element of the list
passed as argument to the --rareparams option.

When the automatic I-FUN construction is selected, Algorithm 1 is used
to build an explicit function on the state space of the global system model.
This means the importance value of each concrete state is stored as an integer
in a vector. Interestingly, the backwards BFS of the algorithm uses a column
major sparse matrix representation (CSC) of the adjacency graph, which
eases the reversed traversing of the model transitions. Since simulations need
to take transitions in a forward manner, the matrix is made row major (CSR)
once the importance function has been built.

The multilevel splitting technique implemented in the BLUEMOON tool is
RESTART. Whenever the auto or adhoc argument is passed to the option
--rarevent, the thresholds are selected for the corresponding I-FUN using
Algorithm 2. Once the thresholds are ready, RESTART simulations are
executed to generate the collection {γ̂i} of estimates, from which the CI is
built as detailed in Section 3.3.4.

A global splitting value is used for all thresholds. By default it equals
two, meaning each time a trial crosses a threshold upwards, two trials will
continue execution, i.e. one clone is created. This value can be tuned with
the split=<num> customization of the --rareparams option.

The global splitting value influences the selection of the thresholds by
means of the balanced growth approach [Gar00, eq. (2.25)]. Generally speaking,
the higher the splitting value, the further the thresholds will be from each
other. The aim is to have roughly the same level-up probability (Definition 10)
in all importance levels, since that should increase the efficiency of RESTART
[VAMGF94].

The main output of the tool displays the resulting point estimate γ̂, the
precision of the CI, and the interval itself. It also shows the current stage of
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the execution: building the model, the importance function, the thresholds,
etc. Specifically when simulating, it shows how many samples γ̂i have been
generated so far. An extract of an output is

>_ PRISM
=====

Version: 4.3.dev
...

Type: CTMC
Modules: ContinuousTandemQueue
Variables: q1 q2 arr lost
-----------------------------------------------
[DEV] Rare event simulation chosen.
[DEV] Simulation type: TRANSIENT
[DEV] Simulation strategy: RESTART_AUTO

...
Identifying special states... done.
Building importance function... done.
Setting up RESTART simulation environment... done.
Estimating rare event probability {5}{6}{8}{52} done:
- Point estimate: 5.873E-6
- Precision: 1.175E-6
- Confidence interval: [ 5.286E-6 , 6.46E-6 ]

...

When estimations finish successfully, like in the example above, some
timing information is printed after the numerical estimates. The total wall-
clock execution time is discriminated in the different stages composing the
full execution. A sample output (continuation of the above) is:

>_ ...
- Confidence interval: [ 5.286E-6 , 6.46E-6 ]

Processing times information
- Total elapsed time: 29.18 s
- Setup time: 0.68 s

> Initial setup: 0.02 s
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> Rare/Reference states identification: 0.01 s
> Importance function building: 0 s
> Thresholds selection: 0.65 s

- Simulation time: 28.5 s

[DEV] Skipping other model checks.

However execution can be prematurely interrupted, truncating estimations
before the desired confidence criteria has been met. This can happen either
by reaching a predefined timeout (set with the timeout=<num> customization
of --rareparams), or by a user or system interrupt. If simulations had already
started and there is estimation data available when interrupted, BLUEMOON

shows the point estimate reached plus CI for typical confidence levels. A
sample output is:

>_ ...
Estimating rare event probability {8}{12}{13}{41} wall time
limit reached.

[rarevent.RareventSimulatorEngine] Interrupted, shutting
down
- Point estimate: 4.851E-6
- 90% confidence: precision = 1.285E-6

interval = [ 4.208E-6 , 5.493E-6 ]
- 95% confidence: precision = 1.531E-6

interval = [ 4.085E-6 , 5.616E-6 ]
- 99% confidence: precision = 2.012E-6

interval = [ 3.845E-6 , 5.857E-6 ]

Besides its main output, BLUEMOON has a technical output where exe-
cution steps are described in more detail. Information like which concrete
states are rare/stopping, the seed fed to the random number generator, the
importance value of the thresholds, and even an extract of the importance
function, are printed in the technical output of the tool.

This data is useful for analysing an execution in depth, e.g. when we
wish to compare the thresholds selected, or for debugging. By default it is
dumped as plain text in a file named after the execution, so for instance

>_ prism-bm model.prism --rarevent ss auto ...
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will print technical info into “rarevent_STEADYSTATE_RESTART_AUTO.log.”
This can be changed with techlog=<name> in the --rareparams option.

The features offered by BLUEMOON can be queried via the PRISM help
interface. For example the command prism-bm --help rareparams displays all
the customizations the --rareparams options has to offer. Interested readers
are referred to the tutorial in the homepage of the tool, where some use cases
are illustrated with the tandem queue model.

3.5 Case studies

Several examples were taken from the RES literature and analysed with
BLUEMOON. The general description of the systems and the results from
experimentation are shown here. The models used to generate this data are
listed in Appendix A.

3.5.1 Experimentation setting

All models studied are continuous or discrete time Markov chains described
in the PRISM input language. Consequently, we could use the model checker
to validate that the models implemented produce the desired outcomes, i.e.
the values published in the works we took them from.

We launched independent experiments for each case, estimating intervals
for confidence coefficients and relative errors fixed a priori. All experiments
ran until the confidence criteria were met, or a wall-clock execution time limit
(wall time limit) was reached. The hardware used was a 12-cores 2.40GHz
Intel Xeon E5-2620v3 processor, with 128 GiB 2133MHz of available DDR4
RAM. We point out however that BLUEMOON uses one core per estimation.

For each system we varied some parameter, stressing out the convergence
conditions by increasing the rarity of the event hence decreasing the value of
γ. For each model and parameter value, we tested three simulation strategies:
RESTART using the automatic I-FUN, RESTART using ad hoc importance
functions (some taken from the literature), and standard Monte Carlo. Four
global splitting values were tested in the I-SPLIT simulations.

We checked the consistency of the confidence intervals obtained, com-
paring them against the values produced by the PRISM tool. This section
presents charts displaying the convergence time for each strategy. Time
measurements cover the full computation process, including preprocessings
like the compilation of the model file and the selection of the thresholds. We

http://dsg.famaf.unc.edu.ar/bluemoon/tutorial
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repeated each experiment thrice; the values shown are the average of the wall
execution times measured for each experiment.

We present all results displaying one chart per splitting value tested. The
outcomes of the standard Monte Carlo simulation appear repeated in all
charts to ease visual comparisons. In each case, we span along the x-axis the
parameter varied to increase the rarity of the event. On the y-axis we show
the average time to convergence, in seconds and using a logarithmic scale.

On the one hand, a bar reaching the upper border of the chart signifies
timeout prior to convergence, and is denoted a failure. On the other hand
and unless noted otherwise, all simulations which converged before the wall
time limit produced an interval containing the value computed by PRISM for
the exact same model.

3.5.2 Tandem queue

Transient analysis
Recall the tandem Jackson network presented in Example 2 consisting of two
connected queues. For a continuous time setting, we replicate the experiment
of [Gar00, p. 84], using parameter values (λ, µ1, µ2) = (3, 2, 6). Starting from
state (q1, q2) = (0, 1), we are thus interested in observing a second queue
fully occupied (denoted a saturation in the second queue) before it empties.
The property query we used is P=? [ q2>0 U q2=c ], where variable c is the
maximum queue capacity (C).

We used the PRISM model from Appendix A.1. Notice we represent the
queue monolithically, in contrast to the modular implementation previously
shown in Code 3.3. Both models are semantically equivalent, but the mono-
lithic version makes it easier to signal events, like an external packet arrival,
without the need to use global variables.

Notice also that the service rate at the second queue, µ2, is greater than
the one at the first queue. That means the first queue is the bottleneck
and hence the rarity of the saturation comes from the fast service times at
the second queue. According to [VAVA06,VA07b,LLGLT09] in respect of the
tandem queue, this is the most difficult scenario to solve.

We tested maximum capacities C ∈ {8, 10, 12, 14}, for which the values
of γ approximated by PRISM are respectively 5.62e-6, 3.14e-7, 1.86e-8, and
1.14e-9. A 95 |10 CI criterion was imposed. This means estimations had
to reach a 95% confidence level and 10% relative error, i.e. the empirical
precision of the interval had to be smaller than 0.2 times the estimate γ̂.
This was to be achieved within 3 hours of wall time execution.
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For the importance splitting simulations, besides the automatic I-FUN
computed by BLUEMOON (denoted auto), we tested three ad hoc importance
functions: counting the number of packets in the second queue alone (q2),
counting the packets in both queues (q1+q2), and a weighed variant of that
second function (q1+2*q2). We used the global splitting values 2, 5, 10, and
15. Standard Monte Carlo simulations are denoted nosplit in the charts and
throughout this section.

The average wall execution times to convergence are shown in Figure 3.3.
Recall we display one chart per splitting value, with the outcomes of the
nosplit simulations repeated in all four charts. Moreover, since the parameter
varied to increase the rarity of the event is the maximum queue capacity, we
span the tested values of C along the x-axis.
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Figure 3.3: Transient analysis times of tandem queue (CTMC model)

For the higher values of C and as expected, the standard Monte Carlo
simulations failed, i.e. they could not meet the the criterion chosen for the
confidence intervals within the time limit imposed.
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Outstandingly and with few exceptions (e.g. for C = 8 with split 10 and
15), the auto importance function outperformed all ad hoc variants in most
configurations. The closest competitor was q2, which sometimes resembled
or improved the convergence times of auto, most notably for the smallest
queue size (where the event is not so rare).

In general, results seem to indicate that the global splitting strategy
implemented in BLUEMOON is quite sensitive to the value chosen. In particular,
Figure 3.3 suggests 5 is the best option among the four splittings values used
for experimentation. In that respect the auto importance function showed
less variance than q2; compare e.g. the performance of these two functions
for the different splitting values when C ∈ {8, 14}.

As explained in Section 3.4, BLUEMOON employs the balanced growth
approach when automatically selecting the thresholds, in an attempt to reduce
the variability of RESTART due to the relationship between the thresholds
location and their splitting. The apparently unpredictable behaviour observed
when varying the splitting value seems to indicate that the chosen strategy is
suboptimal. Further discussions on this topic can be found in the following
sections.

Last, the convergence times of the ad hoc variants showing the worst
performance are noteworthy. For some splitting values when C ∈ {8, 10},
both q1+q2 and q1+2*q2 took longer even than nosplit simulations. This is
evidence that without a proper choice of importance function, thresholds,
and splitting values, the computation overhead of splitting techniques like
RESTART can degrade performance.

Steady-state analysis
We also studied the steady-state behaviour for the saturation of the second
queue. Here γ stands for the time proportion the second queue spends in a
saturated state during long runs. The corresponding query is S=? [ q2=c ].

For the maximum capacities tested C ∈ {10, 15, 20, 25}, the values of γ
approximated by PRISM are 3.36e-6, 1.62e-8, 7.42e-11, and 3.29e-13. Estima-
tions had to build a 95 |10 CI within 2 hours of wall time execution. We
tested the same importance functions and splitting values as in the transient
analysis. Results are presented in Figure 3.4.

Standard Monte Carlo simulations converged only for the smallest queue
capacity. This was expected since, except for C = 10, the queue capacities
used in this experiment exceed the ones of the transient analysis, where
nosplit simulations had failed for the highest values of C.

Prominently, all standard Monte Carlo experiments either failed, or
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Figure 3.4: Steady-state analysis times of tandem queue (CTMC model)

took longer to converge than the runs using importance splitting, whichever
splitting value was selected. This suggests RESTART could be better fitted to
perform steady-state rather than transient analysis, at least in the sequentially
connected queueing setting of this tandem queue.

Again the auto importance function was either the best or the runner up
in terms of performance. From the four splitting values tested, it converged
the slowest for split 2. Its general behaviour did not vary much among the
other splitting values, unlike its closer competitor, namely q2.

It is noteworthy that in a few cases, convergence times decreased as
the rarity of the event increased. See e.g. q2 with splitting 5 for queue
capacities C ∈ {10, 15, 20}, and also q2 with splitting 15 for queue capacities
C ∈ {15, 20, 25}. Studying the technical output of BLUEMOON reveals the
reason may be the automatic selection of thresholds. We base this conjecture
on the reasons exposed next.

Take for instance the performance of q2 for splitting 15, where BLUEMOON

selected 5–6 thresholds for C = 15, 8–9 thresholds for C = 20, and 8–11
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thresholds for C = 25. Since the number of thresholds is almost the same for
C ∈ {20, 25}, the convergence times are mostly influenced by the rarity of
the event, viz. the size of the queue. This results in longer convergence times
for C = 25 than for C = 20, as Figure 3.4 shows (and as expected).

For C = 15 however, convergence took longer than for C ∈ {20, 25}.
Furthermore, measurements are consistent in the three experiments we ran
for this configuration, which used different seeds of the random number
generator. This is clearly at odds with the expected behaviour.

The most plausible explanation seems to be the number of thresholds:
the algorithm chose too few of them for C = 15, hence the full gain derived
from the use of splitting could not be achieved, and the performance of the
I-SPLIT simulations was even worse than for C = 25.

Such theory is also supported by the experiments which did behave as
expected, that is, where convergence times increased together with the value
of C. The conjecture is that in these cases, an increment in the value of C
should be reflected in an increment in the number of thresholds, particularly
with (strictly) more than six thresholds for C = 15.

Take for example the case of the auto importance function for splitting 2.
The number of thresholds automatically selected for C = 10, 15, 20, 25 was
respectively 3, 8, 13, and 18, and these numbers were consistent in all (three)
experiments run for each configuration. Something analogous is observed
for splitting 10 with the importance function q1+2*q2, where the number of
thresholds automatically selected were 2-3, 7, 9-10, and 13, respectively for
the values of C = 10, 15, 20, 25. This is thus more evidence in favour of the
conjecture that the unexpected higher times for smaller values of C could be
caused by a bad selection of thresholds.

These kind of anomalies suggest an inefficient implementation of RESTART,
derived from a suboptimal thresholds selection mechanism. The situation is
similar (and assumed related) to the variability in performance due to the
splitting value used, which was observed in the previous transient study. We
discuss possible solutions to this problem in Section 3.5.3.

3.5.3 Discrete time tandem queue

We also studied the tandem queue in a discrete time setting. Recall the
single queue presented in Example 4 of Section 3.3.1. Here as well time ticks
mark the discrete evolution points of the system, in a scenario where multiple
events can take place at the same tick (e.g. an external packet arrival and a
packet service in the second queue).
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As before, interest lies in studying a system where the first queue is the
bottleneck. The rarity of the saturated state in the second queue, q2=c, is
due to its fast service times w.r.t. the first queue.

Since the model is discrete, the rates from the continuous scenario need
to be replaced with probabilities, defining the odds of an event taking place
at each time tick. Let thus parr denote the probability per time tick of an
external packet arrival, and ps1 and ps2 the probability per time tick of a
packet service in the first and second queues respectively. We used the PRISM

model from Appendix A.2. Notice that just like in the continuous case, we
implemented the queue as a single module rather than compositionally†.

We carried out a steady-state analysis for probabilities parr = 0.1, ps1 = 0.14,
and ps2 = 0.19 and maximum capacities C ∈ {10, 15, 20, 25}. The corre-
sponding long run saturation values (γ) approximated by PRISM are 4.94e-7,
1.28e-8, 3.22e-10, and 7.96e-12. Estimations had to build a 90 |10 CI within
4 hours of wall time execution.

Importance functions similar to those tested in the continuous case were
used in the I-SPLIT simulations. Namely besides auto, the ad hoc functions
employed were q2, q1+q2, and q1+5*q2. We tested the global splitting values
2, 5, 10, and 15. Figure 3.5 displays the average wall times measured.

Unlike with the continuous time model, the smallest splitting value tested
yielded the shortest convergence times. Remarkably, the auto importance
function was the fastest to finish in that setting, for C ∈ {15, 25, 30}. More-
over, leaving aside the splitting value 5, an excellent performance of auto is
observed. The second best I-FUN is clearly q2, just like in the experiments
with the CTMC model of the tandem queue.

The resulting wall execution times for splitting value 5 deserve special
attention. For the values C ∈ {15, 20, 25}, auto took considerably (and
inconsistently) longer than q2. We studied each individual experiment in
further depth, and draw the following conclusions.

In the case of C = 15, two experiments of auto took less than 5 seconds
and one took 16 seconds, whereas all experiments of q2 took around 5 seconds.
Since the number of thresholds did not vary much we attribute this to a
bad seed of the random number generator. The influence of such incident
is exacerbated by the small computation times, resulting in a high relative
variance. The same experiments were repeated with different seeds of the
random number generator, and the convergence times observed were very

† For a DTMC in the PRISM language this implies stating all possible events at each time
tick; that is why the discrete model almost triples in length its continuous counterpart.
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Figure 3.5: Steady-state analysis times of tandem queue (DTMC model)

similar between auto and q2, thus supporting this explanation.
For C ∈ {20, 25} the situation is quite different. For these cases we

observed that fewer thresholds tend to yield faster convergence times, contrary
to the overall observations in the continuous time case. We also witnessed
this behaviour in the outcomes of experimentation with a splitting value of
10, but not in the experiments with a splitting of 2.

A possible explanation is that the theory used for the selection of the
thresholds, which is based on a global (unique) splitting value, is inadequate
for purely discrete systems. Already for the CTMCmodel of the tandem queue,
there is evidence that the implementation in BLUEMOON of the thresholds
selection mechanism is not optimal. In a DTMC model not only the state
space but also the transitions of the system are discretised in time. In this
setting, tiny variations in the splitting or the thresholds may have a snowball
effect in RESTART, causing starvation or overhead in the upper importance
levels hence degrading performance.
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One solution to this problem could be to increase the effort spent in
selecting and probing the thresholds. In that respect, Algorithm 2 implements
the technique Adaptive Multilevel Splitting, for which an improved version is
known. This newer version is named Sequential Monte Carlo [CDMFG12], and
it enhances the statistical properties of the algorithm, reducing the variance
of the outcome. An alternative way to tackle with the issue would be to
reduce the snowball effect derived from having a single global splitting value,
choosing instead the splitting for each threshold individually.

A last minor remark: the average execution times of q1+5*q2 for split 5
and C = 15 is concealed by the legend of the chart. In that configuration
the I-FUN took 6535.5 s to converge. This is almost as much as it took for
the same splitting but C = 30, where it converged in 6674.7 s.

3.5.4 Mixed open/closed queue

Consider a queueing network consisting of two parallel queues handled by
a single server. An open queue, qo, receives packets at rate λ from an
external source. A closed queue, qc, receives (sends) packets from (to) an
internal system buffer. The same server processes packets in both queues,
giving priority to the closed one. That is, packets in qo are served at rate
µ1,1, unless qc has packets, which will be served first at rate µ1,2. In turn,
packets in internal circulation are processed in the system buffer at rate
µ2, and sent back to qc. When a single packet is in internal circulation, the
network is actually an M/M/1 queue with server breakdowns. A schematic
representation of this system is show in Figure 3.6.

Figure 3.6: Mixed open/closed queue



3.5.4 Mixed open/closed queue 107

This was studied in [GHSZ99, Sec. 4.1] in a continuous time setting. Starting
from an empty state (qo, qc) = (0, 0), a transient analysis was performed to
estimate the probability of qo reaching some maximum capacity B, before
both queues become empty again. The setting studied in that work has
a single packet in internal circulation, rates λ = 1.0, µ1,1 = 4, µ1,2 = 2,
µ2 ∈ {0.5, 1.0}, and capacities B ∈ {20, 40}.

We used the PRISM model from Appendix A.3. The implementation is
modular, although the variables representing queue occupancy have global
scope. The transient probability query was P=? [ !reset U lost ].

We analysed the transient behaviour of this system in the setting of
[GHSZ99], for maximum capacities B ∈ {20, 30, 40, 50} of qo. The correspond-
ing probabilities of the rare event approximated by PRISM for rate µ2 = 1.0
are 5.96e-7, 5.82e-10, 5.68e-13, and 5.55e-16. Instead for µ2 = 0.5 they are
respectively 3.91e-8, 8.89e-12, 2.02e-16, and 4.60e-19. Estimations were set
to build a 95 |10 CI within 2.5 hours of wall time execution.

RESTART simulations featured the auto importance function and three
ad hoc variants: counting solely the packets in the open queue (oq), adding
information of whether the packet in internal circulation is currently in
qc (cq+oq), and a weighed version of that last variant (cq+5*oq). We ran
experiments for the global splitting values 2, 5, 10, and 15.

The resulting execution times for an internal server with rate µ2 = 1.0 are
presented in Figure 3.7. Standard Monte Carlo simulation failed for all but
the smallest queue size, B = 20. This comes as no surprise given the values
of γ approximated by PRISM for B ∈ {30, 40, 50}. Still, these results provide
further evidence that (a reasonable implementation of) importance splitting
is a good choice when analysing the properties of a model in a rare event
regime. Impressively, almost all I-SPLIT simulations took less than a minute
to converge, yielding confidence intervals which contained the values of γ
approximated by PRISM. Instead, the only nosplit simulations to converge
took nearly 40 minutes, and this in the less demanding setting.

Studying the performance of the different importance functions, this is
the first situation where auto is not among the favourites. It behaved quite
well for B ∈ {30, 40} with splitting 2, which was the splitting yielding the
best performance in most configurations. In general however it was slower
to converge than the ad hoc variants, though together with cq+oq it showed
smaller sensitivity to the splitting value than the other two functions.

This is also the first situation where the more complex ad hoc importance
functions rivalled the plain count of packets in the target queue, i.e. q2. The
best average convergence times where: 10.2 seconds for B = 20, achieved by



108 MONOLITHIC I-SPLIT

 10

 100

 1000

20 30 40 50

Split 2

auto
oq

cq+5*oq
cq+oq

nosplit

 10

 100

 1000

20 30 40 50

Split 5

auto
oq

cq+5*oq
cq+oq

nosplit

 10

 100

 1000

20 30 40 50

Split 10

auto
oq

cq+5*oq
cq+oq

nosplit

 10

 100

 1000

20 30 40 50

Split 15

auto
oq

cq+5*oq
cq+oq

nosplit

Figure 3.7: Transient analysis times of mixed open/closed queue (µ2 = 1.0)

cq+oq with splitting 2; 11.6 seconds for B = 30, achieved by oq with splitting
5; 26.5 seconds for B = 40, achieved by oq with splitting 2; and 25.1 seconds
for B = 50, achieved by cq+5*oq with splitting 2.

The incongruously long average convergence time of oq for B = 40 with
splitting 5 deserves special attention. When we looked at the individual
experiments the cause became evident: the third experiment took 12 minutes,
whereas the other two converged in 33 and 12 seconds. Once again, the
anomaly can be explained by looking at the thresholds. The outlier used 18 of
them, and the other two experiments used 13 and 14 thresholds respectively.

This case (oq with splitting value 5 and B = 40) is a good example of the
starvation/overhead dichotomy, which affects RESTART when the thresholds
and the splitting are not selected properly. With 13 thresholds estimations
converged in 33 seconds. In the same setting but with 14 thresholds things
improved, needing only 12 seconds to meet the confidence criteria. This
suggests that 13 thresholds yield too little splitting, causing some simulations
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to starve and not reach the rare event. But then with 18 thresholds there is
too much splitting and truncation going on, derived from an overhead in the
number of simulations. Looking at the results of each batch in the technical
output, it is clear that the variability of the outcomes is too high, and thus
statistical convergence takes longer.

Figure 3.8 shows execution times for the alternative rate µ2 = 0.5. The
outcomes of experimentation with B = 50 are omitted because all of them
failed to converge within the wall time execution limit of 2.5 hours. Recall
PRISM computed a probability value of 4.6e-19 to observe such transient event.
Since that is three orders of magnitude lower than the case of B = 50 for
µ2 = 1.0, these failures are not particularly surprising. Neither is the fact
that all standard Monte Carlo simulations failed as well.
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Figure 3.8: Transient analysis times of mixed open/closed queue (µ2 = 0.5)

To interpret the results shown in Figure 3.8, it is crucial to understand
what does the change in the value of µ2 imply. Recall µ2 is the rate at which a
packet is sent from the internal buffer to the closed queue (qc). Furthermore,



110 MONOLITHIC I-SPLIT

recall that the server attending the open queue (qo) will not dequeue packets
from qo as long as qc is not empty. This was analogous to having a broken
server attending qo. Therefore, a lower value of µ2 implies longer periods
of the server dequeueing packets from qo, resulting in lower probabilities of
observing the rare event of a saturated open queue.

As µ2 decreases, having a packet in qc (viz. a broken server) becomes less
common, and the state of qc grows in importance. That is likely the reason
why, for most splitting values, the importance functions cq+oq and cq+5*oq
converged faster than oq. Contrasting against the previous setting where
µ2 = 1.0, the performance of the two functions which consider qc improved
w.r.t. oq, here where µ2 = 0.5.

Doing without these kind of analyses is precisely one of the goals behind
the automatic derivation of the importance function. Notice that the auto
I-FUN converged faster than oq in many situations, and even better than the
best candidates (cq+oq and cq+5*oq) in a few cases, e.g. B ∈ {30, 40} with
splitting 15 and B = 20 with splittings 5 and 10. That is why, even though
auto was not the best performing importance function, we still consider these
results to be satisfactory.

The high variability among the different splitting values tested deserves the
same considerations as in the previous case studies. Finally, we observe that
the slower convergence of auto with splitting 15 for B = 20 w.r.t. B ∈ {30, 40},
was caused by one of the three experiments. Two runs converged in less than
2 minutes, whereas the third experiment took 10 minutes. This problem,
already observed for the DTMC representation of the tandem queue, could
be mitigated by increasing the number of experiments repeated for each
configuration.

3.5.5 Queueing system with breakdowns

Recall the system presented in Example 1, where several sources (which can
be of either one of two types) send packets to a single buffer, and all of them
can become non-operational and get repaired afterwards. The single server
attending the buffer also breaks down and gets repaired, so this system can
be regarded as a generalisation of the mixed open/closed queue from the
previous section.

Kroese et al. studied such a process in [KN99], using importance sampling
in a continuous time setting with five sources of type 1 and also another
five of type 2. The rates used in [KN99, Sec. 4.4] are: (α1, β1, λ1) = (3, 2, 3)
for sources of type 1, describing the speeds of repair, failure, and packet
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production respectively; (α2, β2, λ2) = (1, 4, 6) for sources of type 2; and
rates (δ, ξ, µ) = (3, 4, 100) for the server, where µ stands for packet processing
rather than packet production.

We used the PRISM model from Appendix A.4. The implementation is
monolithic, taking advantage of some Markovian properties to reduce the
size of the state space†. Starting with a single packet enqueued in the buffer,
a broken server, and a single operational source of type 2, the rare event is
a buffer saturation for some maximum capacity K before it empties. The
corresponding transient property is P=? [ buf>0 U buf=k ], where k is K, the
maximum buffer capacity to reach.

We performed a transient analysis for maximum capacities K ∈ {40, 80,
120, 160, 200}. The corresponding values of γ obtained with PRISM are 4.59e-4,
3.72e-7, 3.02e-10, 2.45e-13, and 1.98e-16. We used a 95 |10 CI criterion
together with a wall time execution limit of 3 hours. Like in the previous case
studies, the splitting values tested in the importance splitting simulations
were 2, 5, 10, and 15.

Besides the auto I-FUN computed by BLUEMOON, we tested three ad hoc
importance functions. The simplest one, buf, just counts the number of
packets in the buffer. That seems too naïve, since the up/down state of
the sources is crucial to generate the desired saturation. Therefore, another
variant also counts the number of sources which are up, using weights related
to their production rate to discriminate between the two source types. Such
function is denoted buf+nSu, which stands for “buffer occupancy plus number
of sources up.” The specific expression we used to compute the importance is
buf + src1*lambda1 + src2*lambda2. We also implemented a third strategy,
counting the number of sources which are “down.” This last function is
denoted buf+nSd, and the expression we used to compute the importance is
buf + NSrc1 + NSrc2 - src1 - src2.

A brief reflection on the choice of these ad hoc importance functions is due
before presenting the average convergence times they yielded. Including the
state of the sources when computing the importance of a system state sounds
sensible: the more sources producing packets, the faster a full occupancy
should be observed. That suggests that the more operational sources it has,
the more important a state should be deemed, which points at buf+nSu as
a good I-FUN alternative. Why then try buf+nSd, which uses an opposite

† Rather than individual sources we use counters src1 and src2 of range 6 each, since N
active sources of type i imply a buffer income rate equal to Nλi. Thus the state space
grows linearly with the number of sources.
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heuristic? The answer is a stark “why not? we may just try.” This queueing
system is the most complex introduced so far. The mixed open/closed queue
from the previous section is simpler, yet it showed a behaviour not so easy to
foresee, when changing the value of a single parameter. Perhaps some hidden
subtleties in the interrelationship among components makes the heuristic
behind buf+nSu to derive in a bad implementation of RESTART.
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Figure 3.9: Transient analysis times of queueing system with breakdowns

Figure 3.9 presents the results from experimentation. Standard Monte
Carlo simulations converged in time only for the smallest buffer size, K = 40.
However, in doing so they outperformed all importance splitting simulations.
This is not so surprising since γ > 4.5e-4 for that buffer size, comprising
the least rare event studied so far. Moreover, in half of the cases only one
threshold was selected by BLUEMOON, and in most of the other half of the
cases, two thresholds were selected. Compare this to the 13–18 thresholds
discussed in Section 3.5.4, and the 3–18 thresholds discussed in Section 3.5.2.
Recall the gain derived from using RESTART is exploited when the splitting
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is performed at the thresholds. When the event is not so rare, Algorithm 2
selects few importance values as thresholds, and the overhead of I-SPLIT (e.g.
computing the importance of a state at each simulation step) belittles its
gain. We believe that is the most likely reason why nosplit simulations
outperformed the ones using RESTART for K = 40.

Studying the performance of the different importance functions, it can
be seen that auto and buf converged the fastest in almost all settings. This
defies the previous speculations around the real importance of the system
state, and how it may be affected by the up/down state of the sources.

It is nonetheless unclear whether the state of the sources should be ignored
when computing the importance. Maybe their influence ought to be scaled
down by some unknown factor. Equivalently, the value of buf might need
to be scaled up in the expressions of buf+nSu and buf+nSd, to emphasise a
higher relevance of the buffer occupancy w.r.t. the states of the sources.

We base such hypothesis on the production and fail/repair rates of the
sources, which are almost two orders of magnitude lower than the service
rate µ = 100. This means packets are quickly dequeued from the buffer, and
thus observing many of them enqueued is against the odds. In particular,
observing such high occupancy in the buffer may be far more important than
having one more or less active source.

Furthermore, the number of operational sources is scaled up by the
production rate λi in the expression of buf+nSu. For instance, 20 packets in
buf and 3 sources up (of type 2) is deemed as important as 14 packets in buf
and 4 sources up. This could be yielding a computed importance transverse
to the real importance, with the increment in variance this implies.

To illustrate the last remark and its influence in the convergence times,
consider a state where buf=k-1 and one source of type 2 is broken. Suppose
the importance function buf+nSu is used. Suppose also that the current
system importance is i, and that the importance values i+ 1 and i+ 6 were
selected as thresholds. Then for splitting value k ∈ N>1, a simulation which
repairs the source and then enqueues a packet, produces k2 more rare events
than one that just enqueues a packet. These kind of scenarios augment
the variability between the outcomes of the RESTART runs, increasing the
computation times to convergence.

Last in this line of analysis, we draw attention to buf+nSd, which performed
better than buf+nSu in all but one of the configurations tested. This in spite
of the seemingly unreasonable heuristic behind buf+nSd, emphasising once
again the difficulties of choosing a good I-FUN. Anyhow and in correspondence
with the goals of the thesis, all conjecturing and reviewing can be dropped
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when an algorithm to derive a reasonable function is available.
In particular, we highlight the good quality of the auto importance

function via the ranking of functions for the different buffer capacities. From
the average times to convergence presented in Figure 3.9, the importance
functions which performed better for K = 40, 80, . . . , 200 were respectively
auto with splitting 5 (8.0 s); buf with splitting 15 (42.6 s); buf with split-
ting 10 (97.1 s); auto with splitting 15 (230.5 s); and buf with splitting 10
(346.4 s). Moreover, in the three cases where buf was the winner, auto was
the clear and close runner up. For instance, it took 42.9 s to converge with
splitting 5 for K = 80, i.e. 30 ms (0.7 %) longer than buf.

3.6 Limitations of the monolithic approach

This chapter presented an automatable approach to perform model analysis
by simulation, employing multilevel splitting to boost the convergence speed
of the estimation mechanisms. The only inputs required are a model of the
system, the property query specifying which transient or steady-state analysis
to perform, a confidence criterion or an execution budget to meet (or both),
and a global splitting value. If we resort to the splitting usually suggested
for RESTART, which is the default in BLUEMOON†, this input is the same
that standard analysis by Monte Carlo simulation would require.

The previous section gives empirical validation of the relatively good
efficiency that can be obtained using this approach. In all the systems
and for a vast majority of their configurations, the automatic strategy from
Section 3.3 yielded an I-SPLIT implementation that greatly outperformed
the standard Monte Carlo approach. As desired, this performance difference
was exacerbated by the rarity of the event: the smaller the probability to
estimate, the better RESTART behaved w.r.t. standard simulations.

Moreover, the importance function automatically derived by BLUEMOON

using Algorithm 1 rivalled the best ad hoc alternatives tested, most of them
suggested as sensible or optimal choices by the authors of the articles from
which the systems were extracted.

Unfortunately, this success is not general. BLUEMOON was designed on
top of a model checker which, for the concerns of this thesis, studies Markov
chains only. This is however no theoretical bound, since both algorithms

† In [VAVA02,VAVA06,VAVA11] the authors suggest choosing level-up probabilities (Defini-
tion 10) pi ≈ 0.5, which in our setting implies a global splitting of 2.
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and also the automatic technique as a whole is oblivious of the memoryless
property. Rather, the restriction limiting the applicability of the monolithic
approach stems from a more practical concern: it is the same state space
explosion problem that haunts the foundations of model checking.

This is not directly related to the use of importance splitting. RESTART
simulations require, at most, the execution history that led to each state. The
issue comes from the technique used to automatically build the importance
function. Algorithm 1 needs an explicit representation of the full state space
of the model, to store the importance values computed. Even worse, it also
needs to traverse the transition matrix, whose likely sparsity helps little.

It is easy to appreciate the gravity of such requirements under the light
of real life applications, which may need hundreds of modules to define a
system. This renders infeasible any explicit representation of the state space,
let alone the transition matrix. However it is not necessary to resort to the
real world in order to meet the boundaries of the monolithic approach. The
simplified model of a database facility in the following example is proof of it.

Example 7: Database system with redundancy.

Consider a database system consisting of disks arranged in clusters, disk
controllers, and processors. For redundancy R the system is composed
of two types of processors (with R copies of each type), two types of
disk controllers (with R copies of each type), and six disk clusters (with
R+ 2 disks each). Figure 3.10 shows a schematic representation for two
redundancy values: Figure 3.10 (a) depicts a system where R = 2 and
Figure 3.10 (b) one where R = 4.

(a) Database for R = 2 (b) Database for R = 4

Figure 3.10: Database system with redundancy
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Units lifetime is exponentially distributed with failure rates µD, µC , and
µP for disks, controllers, and processors respectively. When a processor
of one type fails, it causes a processor of the other type to fail with
certain probability. Also, a unit can fail in mode 1 or mode 2 with
equal probability, and each mode has its own repair rate. The system is
considered operational as long as less than R processors of each type, R
controllers of each type, and R disks on each cluster, have failed.
This system was originally studied in [GSH+92] using importance sampling,
and then in [VA98, VA07a, VAVA11] with RESTART using importance
functions defined ad hoc. The interest lies in studying the steady-state
unavailability the system, i.e. where γ reflects the proportion of time
the database is not operational. We focus on the setting used in the
RESTART articles, where (µD, µC , µP ) = (1/6000, 1/2000, 1/2000), the inter-
processor failure probability is 1/100, and the failures modes 1 and 2 have
repair rates of 1 and 0.5 components per time unit respectively.
In [VA98] the author performs studies for redundancies greater than
two, namely R ∈ {2, 3, 4}, and observes how I-SPLIT performs better for
the higher values of R. As discussed in [BDH15] and later in [BDM17],
such observations are reasonable since the underlying adjacency graph is
highly connected, and R steps can make a system with no failed units
become non-operational. Thus small values of R provide a meager setting
for the splitting strategy, which relies on an efficient layering of the state
space, stacking up between the initial state and the rare set. In short:
the higher the redundancy, the better RESTART (and multilevel splitting
in general) should perform.
Consider now the model of such system presented in Appendix A.5.
Even though the description is modular, the variables forming the state
space are global. Also, the same Markovian trick used in the queueing
system from Appendix A.4 is employed, grouping the state of potentially
individual modules instead of implementing them separately.
In spite of all this techniques, the resulting model has four variables
of range R + 1 and six of range R + 3, plus the Boolean variable f in
module Repairman to distinguish between the two failure types. So the
total number of states is 2 (R+ 1)4 (R+ 3)6. For redundancy two, the
lowest one considered, this adds up to 2531250 states in a system with a
dense transition matrix, for which PRISM reports 57825000 transitions.
This will quickly run into trouble regarding physical memory availability,
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where the exact breaking point depends on the total memory available
and the internal data types used. With PRISM development version 4.3
and 8 GiB of available RAM, the model checker throws an std::bad_alloc
exception for R = 4, which would have had 2 · 54 · 76 = 147061250 states
and a reported 3774852200 number of transitions. 2

Example 7 illustrates a practical limitation of the monolithic approach
presented in this chapter. The example also hints at another issue, more
subtle and not critical in the sense that it does not impede us to apply the
general strategy, yet with a clear negative impact on its efficiency.

This subtler issue is rooted in the high connectivity of the adjacency
graph inherent to the database system. The efficiency of multilevel splitting
increases as more levels are placed between the initial system state and the
set of rare states. When few transitions can take a simulation path from any
state to any other state, a rich layering into importance levels is infeasible.

For redundancy R, the database can move from the initial (fully oper-
ational) state to a rare state by taking R transitions. Therefore, the auto
importance function computed by BLUEMOON yields only R ∈ {2, 3} im-
portance levels in the configurations tested, meaning a maximum of 1–2
thresholds. That seems hardly enough to get the full gain from I-SPLIT:
recall the discussions for the queue with breakdowns from Section 3.5.5,
where standard Monte Carlo simulations converged faster than RESTART
simulations for the less rare setting. Something similar happens when running
BLUEMOON on the model of Appendix A.5 for redundancy values R ∈ {2, 3}.

The rarity of the event studied in Example 7 is based on the very low
probability of choosing a few transitions. These scenarios are detrimental
for importance splitting, as mentioned at the end of Section 2.4, and usually
better handled by importance sampling (when applicable).

On those lines it might be argued that the database system is inherently
flat, and that R importance levels is the best we can do. Nevertheless that is
not entirely true: compare a system with just a single disk failed, against a
system where there is one failed component of each type (one disk per cluster,
one CPU of each type, one controller of each type). It is much more likely to
observe a rare event in the second case, since any further failure of any other
component will cause a system failure. Still, the auto importance function
computed by BLUEMOON deems both cases equally important, since both are
(in truth!) one transition away from the set of rare states.

Algorithm 1 cannot distinguish between these cases because it operates on
the fully composed model, where the modular structure is amalgamated into
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a unified, highly connected system. A solution would require us to exploit
such modular structure, understanding the contribution of each component
to the global rare event, and using that to build the I-FUN.

Last and to conclude this chapter, let us return to the main concern
regarding the monolithic approach. The inability to avoid the state explosion
problem comes from the assumptions of Algorithm 1, which builds the
automatic I-FUN on top of a single module. If a modular formalism like the
PRISM input language is used, Algorithm 1 requires the composition of all
the modules of the system, which generates a model whose state space grows
exponentially with the number of modules involved.

A distributed approach sounds like the best solution, where we would
apply (some variant of) Algorithm 1 locally on each module. The difficulty
lies in achieving this without losing track of the global behaviour, since the
north of the I-FUN is the global rare event. Therefore, when computing a
function local to each system component, we must consider how does such
global rare event reflect on each module. Otherwise we would be unable to
choose the importance for its set of local states.

We have thus identi�ed two challenges: distributing the monolithic approach
from this chapter, honouring the global rare event while building the impor-
tance functions locally on each system component; and minding the modular
structure of the system, to favour the layering of the state space and increase
the gain of using importance splitting.

Those two challenges are the main subject of the following chapter, where
we propose strategies to attack the problems, and methods to automate their
implementation.



Automatic I-SPLIT:
compositional approach 4
This chapter introduces strategies to adapt the automatic techniques of
Chapter 3 to fit a compositional (or modular) description of the system. This
is another main contribution of the thesis, involving a decomposition of the
global rare event to build importance functions locally in each module, and
then merging this distributed information to compute the global importance
required by the splitting techniques.

Discussions start with the decomposition of the property describing the
rare event. The aim is to project a local rare event inside of every module,
from which a local importance function can be derived. Then, we study
different ways of computing the importance of the global system model, using
the local importance functions as building blocks. A recently introduced
formalism for modelling general stochastic processes (time-homogeneous
and free of nondeterminism) is considered. Also, another software tool is
presented, which implements the strategies and algorithms introduced, using
the aforementioned new formalism at its core. Finally the efficiency of the
approach is demonstrated by means of case studies.

4.1 The road to modularity

The need for an explicit representation for the state space of the fully
composed model is the most prominent limitation of the monolithic approach
from Chapter 3. This requirement compromises the feasibility of the strategy,
as exposed by the database system introduced in Example 7.

To avoid such problem, consider the naïve solution of applying the I-FUN
derivation technique separately on each component of the system. This
would only require the explicit state space representation of each module,
but not of their composition. In particular for the database system, each
component can either be failed or operational. Consider thus a model of
it for redundancy R > 2, where each component is implemented as an
independent module. Then applying this simplistic solution would need
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6(R+ 2) + 2R+ 2R = 10R+ 12 independent representations of binary state
spaces. Hardly a memory issue even for e.g. R = 100.

Nevertheless the complications hiding behind such strategy are not so
straightforwardly solved. The “I-FUN derivation technique” to which the
naïve solution refers is nothing other than Algorithm 1, which takes two
inputs: the module M and its set of rare states A. To apply such algorithm
on an individual module Mi which forms part of a compound system, we
must first identify its set of local rare states, Ai.

Identifying the sets {Ai} in all modules is by no means trivial, at least
not in the general case. Consider for instance a tandem queue where the user
requests a steady-state analysis of the rare event

q1 >
C

2 ⇒ q2 = C

where ⇒ stands for the usual logical implication. Studying the module of
the second queue, where the local variable q2 is defined, it is unclear whether
the concrete states associated to q2 < C can be regarded as rare. They do
satisfy the rare event property, but only if q1 6 C/2. Which is thus the set of
local rares states in the module of the second queue?

This brings forward the first challenge in the road to modularity:

(a) projecting the global rare event onto the state space of each
module, to guide the construction of local importance functions.

Suppose, for the sake of argument, that challenge (a) has been satisfac-
torily solved. Resuming the analysis of a solution, recall that all multilevel
splitting techniques work with the importance of the states of the model, i.e.
with the importance of the global states. In that sense the naïve strategy
introduced above is incomplete, because it yields a set of functions which are
interpreted separately on the local states of the modules. For each configura-
tion of the global system this results in a set of importance values. Such set
of importance values needs to be merged somehow in order to compute the
global importance needed by I-SPLIT.

Persisting with naïvety, suppose we define such global importance as
the summation of all local importance values. Consider a system where the
contribution of the modules to the rare event is heterogeneous. We have
already studied one such case: the queue with breakdowns introduced in
Example 1 and experimented with in Section 3.5.5. Analyses suggested
that the number of packets enqueued in the buffer—say, the importance
of the module representing the buffer—was far more relevant in terms of
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true (global) importance than the up/down state of the sources—say, the
importance of the modules representing the sources.

Thus, the naïve solution of blindly adding up the importance of all
modules is unsatisfactory in the general case. When merging the set of local
importance values into a global importance, the degree of contribution of
each module to the global rare event becomes relevant. All of which raises
the second challenge in the road to modularity:

(b) building a global importance function on top of the information
stored locally on each module, considering the role of each module
on the rare event.

Challenges (a) and (b) represent the main theoretic difficulties between
the approach from Chapter 3 and a distributed version of it. Challenge (a)
is analysed in further depth in Section 4.2, where a simple and robust
algorithmic solution is proposed. Challenge (b) is the subject of Section 4.3.

4.2 Local importance function

As we have seen, finding a way to modularly decompose the approach from
Chapter 3 is no straight road. The first challenge one finds in this direction
is the identification of the rare event in the local state space of each module.
In this section we propose an automatable strategy to tackle with such issue.

4.2.1 Projecting the rare event onto the modules

Modern modelling formalisms, like the input language of the PRISM model
checker, are usually based upon a compositional description syntax. This
means they allow the user to express the model of the system as the parallel
composition of a set of smaller system modules. Each module has its own
behaviour and it can usually define its own set of local variables, whose scope
does not transcend the module where they are defined.

In spite of this locality of scope, the expression of the user query for the
(global) rare event can include variable names from any module. Consequently,
the property conveyed by such expression has semantics on the global system
model, and not on the modules taken individually. In other words, the rare
event property is interpreted as a set of global states, possibly describing
specific simultaneous configurations of many modules.
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The first step towards a modular approach is to identify, in every module
taken individually, the set of local states Ai corresponding to the global rare
event. The non-trivial question is how to interpret the global property—given
by the user as a rare event query—locally on each module.

To illustrate the fundamental difficulty consider the tandem queue net-
work from Example 2, described by a compositional model like in Code 3.3.
Compare the following definitions of the event under study, to use in a
steady-state analysis of the model:

(a) q2 = C ,
(b) q1 = C ∧ q2 = C ,
(c) q1 > C/2 ⇒ q2 = C .

All three definitions speak of a saturation in the second queue (Queue2), but
the role of the first queue (Queue1) is harder to grasp.

Variable q1 is missing from definition (a), so the module of the first
queue could be ignored when deriving the local importance functions, since
it does not change the validity of the formula q2 = C. In other words, for
definition (a) the local importance function of Queue1 could be null .= λx . 0.

Definition (b) does include variable q1. More precisely, given the logical
expression is a conjunction of two terms, the occurrence of q1 in one of those
terms implies it is a key component of the global rare event. This indicates
that the local importance function of the module of the first queue will not
be null, contrary to what happened with definition (a). Moreover, the local
rare states in Queue1 must be those satisfying q1 = C.

Finally, definition (c) deserves a deeper analysis. That formula is equiv-
alent to ¬ (q1 > C/2) ∨ q2 = C. Therefore, the local rare states in Queue1
are those which do not satisfy q1 > C/2. This is at odds with situation (b),
where the term containing q1 was used as it occurs in the definition. Here
instead the local rare states are identified by the negation of the term where
q1 occurs.

In general, the difficulty lies in knowing whether to take positively or
negatively the occurrence of a variable in the rare event. The whole expression
can have several levels of nested negations, entangling matters. Hence when
analysing a module, it is unclear how to interpret the subformulas where its
variables appear. For instance, in the previous example with the module of
the first queue, the occurrence of q1 in a comparison must be taken positively
for definition (b) of the rare event, and negatively for definition (c).



4.2.1 Projection of the rare event 123

Reviewing the analysis applied in case (c), notice that the conclusion of
using ¬ (q1 > C/2) was reached by means of the equivalence

q1 >
C

2 ⇒ q2 = C ≡ ¬
(
q1 >

C

2

)
∨ q2 = C .

Specifically, the simpler side of the equivalence, viz. the one with disjunction
and negation as logical operators, states more clearly how to interpret the
logical expression for marking the local states.

Similarly, consider the rare event expression ¬ (q1 6= C ∨ q2 < C). It
seems best to use the equivalent expression q1 = C ∧ q2 > C when
interpreting which states should be marked as rare.

The broad idea is to transform the rare event formula into an equivalent
expression in some normal form, where all nesting has been solved and there
are no logical operators of implication nor equivalence. In that respect the
disjunctive normal form (DNF) is a good candidate. A DNF formula is a
disjunction of clauses, each of which is a conjunction of literals. A literal is
an atomic proposition or the negation of one, i.e. a Boolean variable or the
comparison of numeric expressions involving numbers and variables.

Using formulae in DNF has several advantages:

• it is a standard for formula representation, with the usual implications
this conveys, e.g. knowledge from the side of the reader can be assumed;

• all propositional formulae can be equivalently expressed in DNF, so
there is no restriction on what can be analysed;

• the rare event can be clearly identified as the satisfaction of any of the
clauses composing the expression;

• there are no nested negations and thus no ambiguity when interpreting
a literal, since each one clearly states how (positively or negatively) it
contributes to the rare event.

From the three examples above the first two are already in DNF: defini-
tion (a) is a single literal, and (b) is a single clause composed of two literals.
Definition (c) is not in DNF: ¬ (q1 > C/2) ∨ q2 = C is an equivalent DNF
formula composed of two clauses, each with a single literal.

The main advantage of dealing with formulae expressed in DNF is that the
literals carry all the information regarding how to interpret the occurrence of
a variable. Therefore a simple projection of the formula onto the namespace
of each module provides a correct and unambiguous identification of the local
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rare states. In that sense the literals of a formula in DNF can be regarded
as its building blocks, and hence considered indivisible during a projection.
This means e.g. projecting q2 > C onto the scope of Queue1 yields an empty
expression—as explained in the next section—which is not used to identify
the local rare event; because even though the constant C (e.g. the identifier
c) has global scope and is thus known by Queue1, the variable q2 (e.g. the
identifier q2) exists only within the namespace of Queue2.

Continuing with the previous example of the tandem queue, consider a
projection of definition (a), which is already in DNF, onto the namespace of
the module of the first queue. Since q2 is outside the scope of Queue1, the
projection will yield an empty expression. This suggests there is little or no
information regarding the rare event in such module, which could thus be
safely omitted from importance computation. Contrarily, the same projection
onto the namespace of Queue2 yields the expression q2 = C (e.g. q2=c). This
will correctly identify the concrete states corresponding to a saturated second
queue as the local rare states.

In the case of definition (b), which is also in DNF, a projection into
the namespace of the module of the first queue will result in q1 = C. This
means the local rare states are those corresponding to full occupancy in the
first queue, as desired. So in this case Queue1 is relevant for importance
computation. The situation for Queue2 is the same as in (a).

Last, consider the DNF formula q1 < C/2 ∨ q2 = C, equivalent to defini-
tion (c) of the rare event. A projection into the namespace of Queue1 yields
q1 < C/2, identifying as local rare states those corresponding to a first queue
occupied to less than half its capacity. As previously discussed, this is the
desired result, and could be reached without further processing because the
expression used was in DNF. The situation for Queue2 is the same as for the
other two definitions of the rare event.

4.2.2 Algorithms and technical issues

The previous section stated that the logical expression of the user query will
be in disjunctive normal form, yet so far the projection of the formula on
the local scope of each module has been informally introduced. We need an
algorithm to automate this procedure.

Projecting a literal which contains an identifier out of scope must yield
an empty expression with no effect in importance computation. This means
that in the logical expression (of local scope) resulting from our algorithm,
such literal must appear as the neutral element of the logical operator for
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which it is an operand. Since the neutral elements of the disjunction and
the conjunction are different, the projection algorithm must tell these cases
apart. On the one hand, a projected literal which becomes empty inside of a
clause should be replaced with >. On the other hand, a full clause becoming
empty when projected must be replaced with ⊥.

Furthermore, if the full rare event expression becomes empty when pro-
jected on a module, e.g. because all occurring literals contained variable
names out of scope, the resulting expression will be >. This means all
the local states of an uninteresting module will be considered rare. The
reason behind this is related to the later composition of the local importance
functions; it will be justified in Section 4.3.

Algorithm 3 presents a procedure to perform the projection just described.
Notice that there is a finite number of clauses for each DNF formula ϕ, each
containing a finite number of literals. This means both loops in the algorithm
will iterate a finite number of times. Routine free_vars(σ) finds the names
of the free variables occurring in the literal σ. Given each literal has finite
length the routine will terminate in finite time. Furthermore, routines
global_vars() and M.vars() return the names of the variables within the
global scope and the scope of module M respectively. Since there is a finite
number of variables to any system model those routines terminate, in time
linear on the number of system variables. In view of the above, no formal
proof of termination is required for Algorithm 3.

This algorithm chops the global expression of the rare event, producing
smaller formulae which can be independently interpreted in the scope of each
system module. Notice however that this projection policy rules out diagonal
cases, i.e. situations where the rare event involves operations with variables
from different modules in direct comparison.

The issue is unavoidable as far as the arithmetic comparison operators
are concerned, but can be circumvented in other situations. For example,
suppose the user requests a transient analysis of the tandem queue for the
rare event

min(q1, q2) > C

2 .

Interpreting the relationship between operators min( · · ·) and > we see that
the rare event expression is equivalent to q1 > C/2 ∧ q2 > C/2 , to be projected
as q1 > C/2 and q2 > C/2 onto modules Queue1 and Queue2 respectively. It
seems clear that this is the desired behaviour.
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Algorithm 3 Projection of a DNF expression onto a module

Input: module M
Input: (global) rare event expression in DNF ϕ

ϕ̃ ← ⊥
for all clause ψ ∈ ϕ do
ψ̃ ← >
for all literal σ ∈ ψ do
if free_vars(σ) ⊆ M.vars() ⋃ global_vars() then
ψ̃ ← ψ̃ ∧ σ

end if
end for
if ψ̃ 6= > then {syntactic comparison}
ϕ̃ ← ϕ̃ ∨ (ψ̃)

end if
end for
if ϕ̃ = ⊥ then {syntactic comparison}
ϕ̃ ← >

end if
Output: local rare event expression ϕ̃

Suppose instead that the global rare event is

q1 > 0 ∧ q2
q1

> 2 ⇒ q2 > C ,

which queries the probability of a saturation in the second queue, when it
has at least twice as much packets as the first queue. An equivalent DNF
formula is q1 6 0 ∨ q2 < 2q1 ∨ q2 > C , where q1 and q2 appear in direct
comparison in the second clause. The projection of the literal q2 < 2q1 will
yield an empty expression for both modules of the tandem queue, because
q1 is out of scope for Queue2 and q2 is out of scope for Queue1. Thus, the
identification of the local rare states will be given by q1 6 0 in Queue1, and by
q2 > C in Queue2, which is at odds with the original user query. In particular,
such projection does not reflect the dependence between the saturation in
the second queue and the occupancy at the first queue.

Be that as it may, we do not consider this as a major problem due
to conspicuous pragmatic reasons. From a purely practical perspective,
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throughout our research we have encountered few studies involving these
kind of properties. Most articles deal with simple definitions of the rare
event involving a single system variable. Also, on a slightly more theoretical
appreciation, when a direct comparison of variables is necessary then the
semantics behind them is typically related. This means that such variables
will likely be defined in the same semantic unit, viz. the same module.

In spite of those reasons there are examples of diagonal cases in the rare
event literature. For instance [VAVA06] study the transient behaviour of the
tandem queue for the rare event q1 + q2 > C. The only workaround in such
cases is to define the variables affected within the same module, because
Algorithm 3 will otherwise yield empty projections as discussed. For the
tandem queue this results in a monolithic representation like the one from
Appendix A.1. We highlight however that in complex systems with several
components it is unnecessary to merge them all into a single monolithic
model. Composing the modules with the variables in direct comparison will
suffice.

Once all projections are ready we can proceed to build the local importance
function of each module. When the projection is empty for a component we
assume it does not play a primary role in the rare event, and render the local
importance function null. Otherwise we use the formula resulting from the
projection, which is in DNF by construction. The projected formula ϕ̃i is
used to identify the local rare states Ai in module Mi. Then Mi and Ai are
provided as input to Algorithm 1, which yields the local importance function
of the i-th module.

Algorithm 4 presents the full procedure. Routines project( · · ·) and
derive_importance_function( · · ·) are respectively Algorithms 3 and 1.
The member function identify_states(·) of each module Mi returns the
set of local concrete states identified by its argument. Since the identification
takes place within the local scope of the module, the formula ϕ̃i we feed it
with must contain only variables which are global or local to Mi. Routine
project( · · ·) ensures this is the case.

Algorithm 4 clearly terminates since the number of modules is finite,
and routines project( · · ·) and derive_importance_function( · · ·) are al-
gorithms for which a proof of termination has already been given.

It is important to highlight that whenever the projection of the DNF
formula is empty, the nature of the null function assigned to fi will in truth
depend on the composition operator. In a nutshell, null must return the
neutral element of an arithmetic operator, which e.g. for + means fi will be
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Algorithm 4 Local importance functions computation

Input: modules set {Mi}mi=1
Input: global rare event formula ϕ
assert_DNF(ϕ)
for all module Mi do
ϕ̃i ← project(Mi, ϕ)
if ϕ̃i = > then {syntactic comparison}
fi ← null

else
Ai ← Mi.identify_states(ϕ̃i)
fi ← derive_importance_function(Mi, Ai)

end if
end for

Output: local importance functions set {fi}mi=1

λx . 0, whereas for ∗ it will be λx . 1. This matter is explained in further
detail in the following section.

Therefore, using Algorithms 3 and 4 we can compute and store the
importance of the system states in a per-module basis, whose physical
memory requirements grow linearly with the number of modules composing
the model—though exponentially on the number of global system variables.
This in contrast to the monolithic I-FUN construction of Chapter 3, whose
representation as an array in the memory of the computer grows exponentially
with the number of modules. The result is a notion of local importance
functions, the set {fi}mi=1 produced by Algorithm 4, which still need to be
combined with each other in order to compute a global importance function.

4.3 Composition of the local importance functions

In Section 2.6, the description of RESTART is oblivious of the way in which the
importance function is computed or stored. During a simulation, RESTART
simply needs the importance of the current (global) state after taking a
transition. The same transparency is required by all known multilevel splitting
techniques and even by Algorithm 2 to select the thresholds. Therefore,
the approach from the previous section must be complemented with some
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procedure to decide the importance of each state of the fully composed model,
taking as input the local importance of the modules.

4.3.1 Basic composition strategies

The simplest option to compose the local importance functions is letting the
user settle the matter, who would specify an ad hoc way to combine (the
local importance functions of) the modules. We say the user provides an
ad hoc composition function. Formally, the input required is an algebraic
expression using (numeric literals and) identifiers which correspond to the
functions {fi}mi=1.

Say e.g. we are experimenting with the modular description of the tandem
queue from Code 3.3, and let Q1 and Q2 stand for the the local importance
functions of modules Queue1 and Queue2 respectively. Then the user could
specify composition functions such as Q1+Q2, 2*Q1+5*Q2, and (1+Q1)*(1+Q2).
The choice will likely depend on the nature of the rare event under study.

This is comparable to an ad hoc specification of the importance func-
tion. Rather than asking the user to operate with variables, the arithmetic
expression provided is of higher level, dealing with whole modules. The
local importance function built for a module is trustworthy, in the sense
that it effectively translates the behaviour of the module into importance
information—see Chapter 3. Hence using these local functions as building
blocks of the expression, instead of the local variables of the modules, is an
improvement over explicitly defining an ad hoc importance function.

There is no fundamental problem with such strategy, but the general goal
of the thesis is to develop automatic ways to lighten the burden of the user,
so an algorithmic solution is preferable.

The simplest automatic way of combining the local importance functions
is choosing an associative binary arithmetic operator, a composition operand,
and apply that to all functions. Natural candidates are summation, product,
max, and min. Notice each operand has its own neutral element. Therefore
choosing + will make Algorithm 4 use λx . 0 as the null function; choosing
max will use λx . −∞, and so on.

The performance of I-SPLIT will variate with the choice of operator,
influenced by the nature of the model and of the rare event. That is evident
since the local importance functions (i.e. the arguments of this composition
operand) depend on the expression of the rare event.

For instance if the tandem queue is analysed for the rare event q2 = C,
using summation or max as composition operand yields the same global impor-
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tance, since Q1 will be a null local function and thus Q1+Q2= max(Q1,Q2)= Q2.
By contrast for the rare event q1 = C ∧ q2 = C, choosing max or summation
yields different results, as shown in the following example.

Example 8: I-FUN compositions for the tandem queue.

Figure 4.1 shows importance functions on the concrete state space of a
(CTMC) tandem queue with capacity C = 3, for the rare event expression
q1 = C ∧ q2 = C. Moving from left to right in a lattice increases the
number of packets in the first queue; moving from the bottom upwards
increases the packets in the second queue. Arrows indicate the transitions
of the system: an external packet arrival into the first queue is an
horizontal arrow; a packet moving from the first to the second queue is
a diagonal arrow; and a packet leaving the second queue is a vertical
arrow.
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Figure 4.1: Importance functions for the tandem queue
with rare event q1 = C ∧ q2 = C

Different importance functions are presented in the schemes. The num-



4.3.1 Basic strategies 131

bers within the concrete states (i.e. within the nodes of the lattices) are
the importance values each I-FUN assigns to the states. Figures 4.1 (a)
and 4.1 (b) show modular functions built with the approach from Sec-
tion 4.2. In Figure 4.1 (a) the composition operand max is used, whereas
in Figure 4.1 (b) summation is used. Figure 4.1 (c) shows the monolithic
I-FUN that the approach from the previous chapter would construct.
The symmetry of the importance values in Figures 4.1 (a) and 4.1 (b) is
a result of the compositional nature behind the assignment of the global
importance values. Whereas the monolithic I-FUN from Figure 4.1 (c)
can consider each concrete global state individually, functions built with
the compositional approach can only distinguish between the states of
a separate module. As a consequence there can be global behaviours
which the monolithic approach can grasp but which are invisible to the
eyes of the compositional approach. This is related to the diagonal cases
mentioned in Section 4.2.2 and is further discussed in Section 4.3.2. 2

In previous sections we introduced the monotonicity condition of an I-FUN,
to mean that every simulation following a shortest path from the current
state to the rare set, will traverse a monotonically increasing sequence of
importance values. For the setting depicted in Figure 4.1, a shortest path is
one that only uses horizontal and diagonal arrows to reach the single rare
state on the top-right corner of the lattice. Notice that the monolithic I-FUN
from Figure 4.1 (c) satisfies the condition, as expected.

The monotonicity condition is a desirable property for an importance
function. It ensures that simulation paths moving in the right direction will
not suffer from truncation, which is clearly advantageous. However the same
holds using a slightly weaker definition, requesting the visit of non-decreasing
instead of increasing importance values. Under this new definition, the
composition strategy Q1+Q2 from Figure 4.1 (b) in Example 8 also satisfies
the monotonicity condition. That is not true for max(Q1,Q2) in Figure 4.1 (a),
notice e.g. the diagonal transition (q1, q2) = (2, 0) (1, 1).

All this suggests that summation is a better composition operand than
max when the rare event is q1 = C ∧ q2 = C. That is also indicated by the
(much less rigorous) rule of thumb of comparing the maximum importance
value assigned in each case. The sum of Q1 with Q2 gives importance 6 to the
rare state of the system, whereas max(Q1,Q2) reaches only the value 3. Recall
that for any model and rare event, the higher the importance range of a
function, the more options Algorithm 2 has to choose thresholds from. From
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this viewpoint Q1+Q2 is also more promising than max(Q1,Q2), since broadly
speaking more thresholds mean more splitting and thus better simulation
efficiency, at least when adaptive algorithms like Adaptive Multilevel Splitting
or Sequential Monte Carlo are used to select thresholds intelligently.

4.3.2 Monolithic vs. compositional importance functions

In the approach from Chapter 3, the I-FUN is built on top of the concrete
state space of the fully composed model. Algorithm 1 is used to perform the
task and, as a result, the global static behaviour is exploited in the process.
By static behaviour we refer to the transitions of the adjacency graph at
concrete level, which are aware of the predecessors of a state but ignore the
probabilistic/stochastic nature of the edges†.

In this chapter the local static behaviour of each individual module is
exploited separately. There can however exist interactions between the system
components, which appear explicitly at global level but cannot be captured by
Algorithm 1 at local level. If inadequate strategies are chosen to compose the
local importance functions, this can deteriorate the quality of the resulting
function when any of the following two situations arise:

(a) the variables used in the rare event expression reside in a few
small modules, which express little of the full process behaviour;

(b) module synchronization subsumes much of the semantics of the
full process, so the collective state of all system components
affects greatly the behaviour of each individual component.

The following example illustrates the hazards of an inappropriate use of the
compositional approach when the system exhibits those problems.

Example 9: Building houses of cards.

Lazing on a Sunday afternoon you poke about in grandpa’s closet, God
rest his good soul. Inside of a dusty suitcase you find an old pack of
Spanish playing cards, and start building card houses. You build one
house per suit, using all cards in the suit. You build them close together
so that any misplaced card will tumble all houses down—whoops!
Code 4.1 shows a PRISM model of the game in a discrete time setting.
Since it is a DTMC all edges have probabilities. These are implicitly

† As opposed to the dynamic behaviour of the system affecting e.g. a RESTART simulation.

https://www.youtube.com/watch?v=wCVVvNLUjTU
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equal to 1.0 but for the edge of lines 9 and 10, where equal probability is
given to properly placing a card vs. tumbling the whole thing down.
Module House represents how many cards have been correctly placed
while building the house with the current suit. Module Suit keeps track
of the current suit under use; Spanish suits comprise Copa (cup, ), Oro
(gold, ), Basto (club, ), and Espada (sword, ).

Code 4.1: Card houses game
1 dtmc
2
3 const int NUM_SUITS = 4; // Copa, Oro, Basto, Espada
4 const int CARDS_IN_SUIT = 10;
5
6 module House
7 state: [0..2]; // 0:idle ; 1:place_card ; 2:tumble_cards_down
8 cards: [0..CARDS_IN_SUIT];
9 [] state=0 & cards<CARDS_IN_SUIT -> 0.5: (state’=1)

10 + 0.5: (state’=2);
11 [] state=1 & cards<CARDS_IN_SUIT -> (cards’=cards+1) & (state’=0);
12 [whoops] state=2 & cards<CARDS_IN_SUIT -> (cards’=0) & (state’=0);
13 [house] cards=CARDS_IN_SUIT -> (cards’=0);
14 endmodule
15
16 module Suit
17 suit: [1..NUM_SUITS];
18 [whoops] true -> (suit’=1);
19 [house] suit < NUM_SUITS -> (suit’=suit+1);
20 endmodule

Starting off easy the goal is to build a single house, say using the Copa
suit. The question then rises, how likely are you to succeed in the first
attempt, without any tumbling down of cards? This question regards
transient behaviour, and the model from Code 4.1 allows a succinct
property query to express it:

P=? [ state<2 U suit=2 ].
Let us compare the importance functions that the monolithic and compo-
sitional (with summation) approaches would generate. For that purpose
Figure 4.2 shows a spartan representation of the concrete state space of
the system. In the scheme only the Copa suit is represented, and variable
state from module House is abstracted away. That variable exists to
distinguish between a proper card placement and a tumble-down. In
the schemes from Figure 4.2 that is represented with a forked arrow, ,
where the down-going tip stands for the tumble-down (whoops!), and
the straight tip stands for the proper card placement.
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Figure 4.2: Card houses game (beginners version)

The flatness of the function in Figure 4.2 (b), which only has the impor-
tance values {0, 1}, is due to problem (a) mentioned before. Since the
expression of the rare event in the property query is suit=2, the local
I-FUN of module House is null because none of its variables appear in the
expression. Oppositely, the monolithic approach can—only—observe the
value of variable suit in interaction with variable cards, thus capturing
the behaviour of the fully composed model.
The compositional approach yields a poor function because the expression
of the rare event leaves out a relevant module, i.e. due to problem (a).
In some cases an easy workaround is to force the occurrence of relevant
yet inessential variables in the expression of the rare event. For instance
the query P=? [ state<2 U suit=1 & cards=CARDS_IN_SUIT ] enriches the
compositional approach in the previous situation, yielding the same
importance function than the monolithic approach would.
Unfortunately problem (b) is harder to counter, since making the func-
tions rigorously local to each module implies losing track of the nature
of interactions with other modules. To illustrate the hazards of this
problem consider the full version of the game, where you wish to build a
house with each of the four suits. The property query is:

P=? [ state<2 U suit=NUM_SUITS & cards=CARDS_IN_SUIT ].

Problem (a) is thus avoided and applying the monolithic and compo-
sitional approaches yields the importance functions represented in Fig-
ure 4.3. As before, summation is used to compose the local importance
functions of modules House and Suit in Figure 4.3 (b).
On the one hand Figure 4.3 (a) shows a natural continuation of the
previous monolithic result presented in Figure 4.2 (a), extended here to
consider the four suits of the Spanish pack.
On the other hand the I-FUN from Figure 4.3 (b) presents an anomaly
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much detrimental to I-SPLIT: each time a house is completed using all
the cards in a suit, the importance drops almost to the initial value.
In multilevel splitting simulations, that might truncate several path
offsprings which were actually moving in the right direction.

0 1 9 10
w w w w

w

house

w w w w

house

w w w w

wwww

house

0 1 9 10

11 12 20 21

43

22 23 31 32

33 34 42

(a) Monolithic

0 1 9 10
w w w w

w

house

w w w w

house

w w w w

wwww

house

0 1 9 10

1 2 10 11

13

2 3 11 12

3 4 12

(b) Compositional (op: +)

Figure 4.3: Card houses game (full version)

2

At least two factors contribute to the issue observed with the compositional
approach depicted in Figure 4.3 (b). One of them is problem (b), i.e. the
system from Code 4.1 uses the communication between modules as a key
element to progressively evolve towards the set of rare states. On its own
however that is not detrimental to the approach. The second factor that
led to the poor result of Figure 4.3 (b) is using summation as composition
operand. This clearly failed to apprehend the nature of the evolution towards
the rare event.

Combined with a proper composition function, the compositional ap-
proach can mimic the monolithic I-FUN. Take for instance the function
CARDS_IN_SUIT*SUIT+HOUSE, where SUIT and HOUSE stand for the local func-
tions of the homonymous modules in Code 4.1. The reader can check this
yields (almost) the same function than that of Figure 4.3 (a).

Yet falling back to the use of a composition function requests an ad hoc
intervention by the user, which defeats the purpose of the thesis. An au-
tomatable procedure is desirable, with enough plasticity to behave well when
the system modules exhibit non-trivial interaction schemes. Our proposal in
that respect is the subject of the following section.

Example 9 may give the impression that whenever feasible, using the
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monolithic approach from Chapter 3 will always yield an importance function
superior to the ones that can be built with the compositional approach. That
is most certainly not the case.

First, the model of the card houses game presented in Code 4.1 is somewhat
artificial. It was devised with the intention of dislocating an otherwise purely
sequential evolution from the initial state towards the rare event. The goal
was to put in evidence that a naïve application of the compositional techniques
from the previous sections can yield poor results.

Second, recall the limitations of the monolithic approach presented in
Section 3.6. There were two issues with the database system from Example 7:
a monolithic I-FUN would occupy more physical memory in the machine than
available; and the model displays a flat structure when all its modules are
composed. The compositional approach is primarily designed to tackle with
the first issue, but is also very useful to attack the second one.

The specific problem was that once composed, the state space of the
full database process distinguishes only R importance levels for redundancy
R ∈ N>1. That leaves little room for an efficient layering of the state space,
as needed by multilevel splitting. If instead the structure of the system is
exploited prior to composition, like the compositional approach allows, more
importance levels could be fabricated to boost the splitting needed by I-SPLIT.
We elaborate on this in the next section.

4.3.3 Composing the functions with rings and semirings

The primary goal is thus to conceive an automatic composition strategy for
the local functions, which performs well regardless of the specific inter-module
interactions, resulting in a reasonable global importance function.

Remember the application of the compositional approach to the tandem
queue in Section 4.3.1. Depending on the rare event under study, using
the composition operands max or + could yield different global importance
functions. In particular max(Q1,Q2) = Q1+Q2 for the rare event q2 = C, whereas
Example 8 shows summation is the best candidate for the rare event q1 =
C ∧ q2 = C. All of this suggests that the performance of a composition
strategy is directly affected by the expression defining the rare event.

Consider now a triple tandem queue, i.e. packets processed by the server
of the second queue are buffered in a third queue, leaving the system only
after they are processed by the server of this third queue. Code 4.2 shows a
model of the system.
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Code 4.2: PRISM triple tandem queue model
1 ctmc
2
3 const int c = 7; // Queues capacity
4 const int lambda = 1; // Arrival rate
5 const int mu1 = 2; // Server1 rate
6 const int mu2 = 4; // Server2 rate
7 const int mu3 = 6; // Server3 rate
8
9 module Arrivals

10 [arrival] true -> lambda: true;
11 endmodule
12
13 module Queue1
14 q1: [0..c];
15 [arrival] q1<c -> 1: (q1’=q1+1); // Receive
16 [arrival] q1=c -> 1: true;
17 [service1] q1>0 -> mu1: (q1’=q1-1); // Process
18 endmodule
19
20 module Queue2
21 q2: [0..c];
22 [service1] q2<c -> 1: (q2’=q2+1); // Receive
23 [service1] q2=c -> 1: true;
24 [service2] q2>0 -> mu2: (q2’=q2-1); // Process
25 endmodule
26
27 module Queue3
28 q3: [0..c];
29 [service2] q3<c -> 1: (q3’=q3+1); // Receive
30 [service2] q3=c -> 1: true;
31 [service3] q3>0 -> mu3: (q3’=q3-1); // Process
32 endmodule

Say the user requests a steady-state analysis in the model from Code 4.2
for the rare event

(q1 = C ∧ q2 = C) ∨ (q1 = C ∧ q3 = C) . (15)

The formula is already in DNF; the projection on the modules of the queues
will label as rare the local states satisfying qi = C for i ∈ {1, 2, 3}.

Given the states of all modules are relevant, it seems reasonable to
believe that summation is a natural candidate for composition strategy,
viz. employing the global importance function Q1+Q2+Q3, where Qi stands for
the local importance function of module Queuei.

Notice however that eq. (15) is equivalent to q1 = C ∧ (q2 = C ∨ q3 = C),
hinting at a higher relevance of the number of packets in the first queue
w.r.t. the number in the second or third queue taken on their own. That is
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overlooked by the global importance function Q1+Q2+Q3, which considers the
number of packets in each queue equally relevant.

This suggests there is a very strong correlation between the precise rare
event expression used, and the performance of the composition strategy.
Thus, the possibility of deriving the latter using the former is quite appealing.
The objective is to generate a composition strategy as tightly fit to the rare
event expression as possible.

The requirement to work with logical formulae expressed in DNF already
gives some structure that could be exploited. Recall the building blocks of
DNF formulae are the literals, and the current focus is on literals consisting
of variables local to the scope of a single module—see Section 4.2.2. We could
hence map each literal in the rare event formula, to the local importance
function of the module where the literal resides.

The above indicates that eq. (15) yields the sequence of local importance
functions (Q1,Q2,Q1,Q3). Those functions are to be composed somehow fol-
lowing the DNF structure of eq. (15), to build the arithmetic expression which
will serve as global importance function. That sounds reasonable but leaves
an open question: how should the disjunction and conjunction operators
from the DNF expression be interpreted?

Notice that the previous reflection regarding the higher relevance of Queue1
for eq. (15) is reached using the distributive property of ∧ with respect to
∨ . In particular, the pair (∨,∧) is an algebraic structure known as ring,
where ∨ and ∧ are respectively the addition and the multiplication of the
ring. The distribution of multiplication over addition, e.g. of ∧ over ∨, is
an axiom of the ring and semiring algebraic structures.

Therefore we propose to choose pairs of algebraic operators (⊕,�) which
present ring or semiring structure, and map the occurrence of (∨,∧) in the
DNF expression of the rare event to (⊕,�) in the composition strategy. In
particular, maximum and summation—i.e. (max,+)—and summation and
product—i.e. (+, ∗)—have respectively semiring and ring structure.

So for instance the rare event from eq. (15) can be turned into the
composition strategy max( Q1+Q2 , Q1+Q3 ), which by the distributive property
of + with max results in the global importance function Q1+max(Q2,Q3).
Remember Qi does not symbolise a variable of a module, but is rather
interpreted as the local importance function of a module.

To contrast the performance of this strategy against the simplistic ap-
proach of employing a binary associative operand, consider a triple tandem
queue where the current global state is (q1, q2, q3) = (C − 1, C − 1, 0).

Using summation, i.e. the composition operand +, results in the global
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importance function Q1+Q2+Q3. This function misses out the structure that
appears in the expression of the rare event, and for instance yields the same
importance as a new incoming packet enters the system and moves from
the first to the last queue. Yet that is a mistake: it is true that a new
packet entering the system modifies the (former) state (C − 1, C − 1, 0)
increasing the importance, because a rare event can be generated by having
(q1 = C ∧ q2 = C); but the importance decreases if the packet reaches the
third queue, since that queue is a long way from becoming full.

Instead, using the (max,+) semiring results in the global importance
function Q1+max(Q2,Q3) as previously discussed. So the importance remains
unchanged, equal to 2C− 1 say, while this new packet is in the first or second
queue. However, the importance decreases as desired to 2(C − 1), say, when
the packet moves into the third queue.

4.3.4 Post-processing the functions

There is more one can do once a proper composition strategy has been decided
upon. Recall that when a composition operand is selected, Algorithm 4 will
choose the proper neutral element, and use it as the null function whenever
the projection of the DNF expression onto the module is empty. However,
when one chooses a ring or a semiring composition strategy there are two
operands at play. So for instance when using (max,+), the null function
must behave as λx . 0 when the (identifier representing the) corresponding
local importance function appears as argument of +, and it must behave as
λx . −∞ when it appears as argument of max.

One way to achieve the correct behaviour is to apply a post-processing to
the importance values computed by the derivation algorithms. The (max,+)
semiring is in no real need of such tricks since our importance functions
are non-negative. Thus 0 is the null element for both + and max. The
(+, ∗) ring however could render to zero a whole product in an expression,
simply because one of the local importance functions involved is currently at
its minimum, viz. 0 according to Algorithm 1. We will refer to this as the
nullification problem.

The simplest workaround is value shifting: take all the values of any local
importance function and add 1 to them. Alas, there are no more zeroes and
the nullification problem vanishes. All this without the importance function
having really changed. Another possibility a little more far fetched is to
apply exponentiation. Take any base b ∈ [1,∞) and change the importance
value i to the value bi for every state. Since b0 = 1 this achieves the goal just
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as well; however the importance function has changed, it has expanded and
has now an increased range of different (global) importance values.

To see this at work consider the triple tandem queue for the rare event
defined by eq. (15). Say the ring (+, ∗) is used to compose the local importance
functions {Q1, Q2, Q3}, yielding the global function Q1*(Q2+Q3) as described
in Section 4.3.3. Since Q1 is multiplied by the result of the sum of the
other two functions, a post-processing is needed to avoid the nullification
problem. For capacity C = 2 and assuming Im(Qi) = {0, 1, 2}, the shift
post-processing yields eleven different global importance values, namely
{2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18}. Using instead the post-processing exp with e.g.
base b = 2.0 yields {2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32} as global importance
values, which are twelve in total. If the capacity of the queues is increased
to C = 3, then shifting yields 19 different global importance values whereas
exponentiation yields 22; for C = 4 these become 27 vs. 35.

What happens is that many global importance values appear repeated for
different combinations of values of the functions {Q1, Q2, Q3}. This is due to
the interactions between product and addition in the expression Q1*(Q2+Q3),
which for very close values of Q1, Q2, and Q3 cause many repetitions of the
arithmetic result. Setting the possible values of these local functions further
apart, e.g. by means of the exponentiation post-processing, results in less
such repetitions and thus a richer set of global importance values to choose
thresholds from.

The previous section demonstrates the benefits of exploiting the expression
of the rare event in order to derive a natural and efficient importance function.
In this section we show that a careful choice of post-processing for the specific
ring/semiring chosen, can boost the importance range exhibited by the global
importance function. The gain is clear: the more importance values the
function can yield, the more options to choose thresholds from, and the more
promising an application of multilevel splitting becomes.

The gain attained by such techniques will be practically demonstrated
when revisiting the database system with redundancy from Example 7.
Before doing so however, we will extend the expressiveness of our modelling
techniques.

4.4 Input/Output Stochastic Automata

When introducing Algorithms 1 to 4 we highlighted that the Markovian
property was never part of the hypotheses, and that all the theory presented
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is applicable to general time-homogeneous stochastic processes. Yet the
single modelling syntax introduced so far is the PRISM input language, which
for the scope of this thesis can only represent Markovian systems. We now
present a modern modelling language which can represent processes in a
continuous time setting where arbitrary probability distributions—and not
just the exponential—can be employed.

Stochastic Automata (SA) were introduced in Section 2.1. They allow
sampling stochastic events from general distributions, i.e. arbitrary continuous
random variables can be represented in a stochastic automaton. These random
variables are denoted clocks, and take positive values which result from the
sampling of their associated (continuous) distribution. As the global system
time advances the remaining time of the clocks decreases synchronously in
equal proportion, viz. the value of all clocks decreases at the same rate.
When, as a result of this decrease, the value of a clock becomes zero, the
clock expires and enables the firing of synchronisation events.

However, the transition relation → from Definition 4 of SA allows non-
deterministic behaviour, which is problematic from the point of view of
simulations. This issue is acknowledged by [DLM16], who derive a subset
of SA closed under parallel composition called Input/Output Stochastic Au-
tomata. The result are fully probabilistic systems, viz. where nondeterminism
has been ruled out in the resulting fully composed model.

In order to achieve this goal [DLM16] restrict the framework of SA and work
with a partition of the actions set A, splitting them into input actions (AI)
and output actions (AO). Inputs synchronise with outputs, which respectively
behave in a reactive and generative manner [vGSS95]. This roughly means
that the act of performing the transition (generating behaviour) is indicated
by an output, whereas inputs listen and synchronise themselves with outputs
(reacting to this behaviour).

Thus, output actions have an active role and are locally controlled. As a
consequence their occurrence time is controlled by a random variable. Instead,
input actions have a passive role and are externally controlled. Therefore
their occurrence time can only depend on their interaction with outputs. The
formal definition of these systems is given next.

Definition 17 (IOSA, [DLM16]). An Input/Output Stochastic Automaton
(IOSA) is a tuple (S,A, C,−→, s0, C0) where:

• S is a denumerable set of states,
• A is a denumerable set of labels partitioned into disjoint sets of

input labels AI and output labels AO,
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• C is a finite set of clocks s.t. each x ∈ C has an associated continu-
ous probability measure µx : R→ [0, 1] with support on R>0,

• −→ ⊆ S × 2C ×A× 2C × S is a transition function,
• s0 ∈ S is the initial state, and
• C0 ⊆ C are the clocks initialised in the initial state.

In addition to the above, an IOSA satisfies the following constraints:

(a) if s C,a,C′−−−−→ s′ and a ∈ AI , then C = ∅,
(b) if s C,a,C′−−−−→ s′ and a ∈ AO, then C is a singleton set,
(c) if s {x},a1,C1−−−−−−→ s1 and s {x},a2,C2−−−−−−→ s2, then a1 = a2, C1 = C2, and

s1 = s2,
(d) if s {x},a,C−−−−−→ s′ then, for every transition t C1,b,C2−−−−−→ s, either x ∈ C2,

or x /∈ C1 and there exists a transition t {x},c,C3−−−−−→ t′,
(e) if s0

{x},a,C−−−−−→ s then x ∈ C0,
( f ) for every a ∈ AI and state s, there exists a transition s ∅,a,C−−−→ s′,
(g) for every a ∈ AI , if s ∅,a,C1−−−−→ s1 and s ∅,a,C2−−−−→ s2, then C1 = C2

and s1 = s2.
The occurrence of an action is controlled by the expiration of clocks.

Thus, whenever s {x},a,C−−−−−→ s′ and the system is in state s, output action a will
occur as soon as clock x expires. At this point the system moves to state s′,
choosing new values for every clock y ∈ C sampled from the corresponding
distribution µy. For input transitions s ∅,a,C−−−→ s′ the behaviour is similar;
the difference lies in the time of occurrence of the transition, which will be
defined when the action interacts with an output.

Constraint (a) states that inputs are reactive and hence their occurrence
is controlled by the environment. Constraint (b) states that outputs are
generative (or locally controlled) so they have an associated set of clocks
which determine their occurrence time†.

Constraint (c) forbids that a single clock enables two different transitions,
which is crucial to avoid nondeterministic behaviour, since otherwise two
output actions could become enabled simultaneously. Furthermore notice
that using a clock after it has expired would immediately enable the re-
spective output transition. That also leads to situations where two or more

† The set is a singleton in the wake of achieving a clean definition.
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transitions are simultaneously enabled, e.g. if the system arrives at a state
where two different (expired) clocks enable two different output transitions.
Constraints (d) and (e) ensure that expired clocks are not used. Particularly
(d) states that an enabling clock x at state s must either: be set on arrival
to state s (x ∈ C2); or is enabling in the immediately preceding state t and
it has not been used right before reaching s (x /∈ C1).

Since clock values are sampled from continuous random variables, the
probability that the value sampled for two different clocks coincides is zero.
This, together with constraints (c) to (e), guarantees that almost never two
different output transitions are enabled at the same time point. Finally,
constraints ( f ) and (g) are usual restrictions on Input/Output-like automata:
( f ) ensures that outputs are not blocked in a composition; (g) ensures that
determinism is preserved by the parallel composition.

Input/Output Stochastic Automata are given semantics over NLMP
[Wol12, DSW12], which are a generalisation of probabilistic transition sys-
tems with continuous domain. More precisely, NLMP extend LMP [DEP02]
with internal nondeterminism. We next define NLMP formally, since they
will be used to show that IOSA are deterministic. For a deeper understanding
of Definition 18 and a more extensive description of these systems and its
properties, we refer the interested reader to Appendix C.

Definition 18 (NLMP). A nondeterministic labelled Markov process (NLMP)
is a tuple (S,Σ, {Ta | a ∈ L}) where:

• S is an arbitrary set of states,
• Σ is a σ-algebra on S,
• for each label a ∈ L the function Ta : S → ∆(Σ) is measurable from Σ

to the hit σ-algebra H(∆(Σ)).

The semantics of an IOSA is formally defined by an NLMP using two
types of transitions: one type encodes the discrete steps, and contains all
probabilistic information introduced by the sampling of clocks; the other
type describes the time steps, recording the passage of time by synchronously
decreasing the value of all clocks. To simplify matters, Definition 19 taken
from [DLM16] assumes an order in the set of clocks C, affecting also the
vectors in RN representing their valuations.

Definition 19. Given an IOSA I = (S,A, C,−→, s0, C0) with C = {xi}Ni=1, its
semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where:
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• S = (S]{init})×RN and L = {init}]A]R>0, with init /∈ S∪A∪R>0,
• Tinit(init, ~v) = {δs0 ×

∏N
i=1 µxi},

• Ta(s,~v) = {µ~v,C′,s′ | s C,a,C′−−−−→ s′,
∧
xi∈C ~v(i) 6 0} for all a ∈ A, where

µ~v,C′,s′ = δs′ ×
∏N
i=1 µxi , with µxi = µxi if xi ∈ C ′ and µxi = δ~v(i)

otherwise, and
• Td(s,~v) = {δ−d(s,~v) | 0 < d 6 min(V )} for all d ∈ R>0, where δ−d(s,~v)

is the Dirac distribution δs ×
∏N
i=1 δ~v(i)−d, and we define the set of

positive reals V =
{
~v(i) | ∃a∈AO, C ′ ⊆ C, s′∈S : s {xi},a,C

′
−−−−−−→ s′

}
, with

min(∅) .=∞.

The fact that P(I) from Definition 19 actually satisfies Definition 18
of NLMP is proved in [DLM16]. Notice the state space S of P(I) is the
product space of the states of the IOSA with all possible clock valuations. A
distinguished initial state init is added to encode the random initialization of
all clocks. In turn, S has the usual Borel σ-algebra structure, B(S).

Discrete steps are encoded by Ta for a ∈ A. At state (s,~v) the transition
s

C,a,C′−−−−→ s′ takes place if ∧xi∈C ~v(i) 6 0, i.e. once all current clocks have
expired—trivially true for input actions. The next state reached in the NLMP
will have s′ as IOSA state, clocks not in C ′ preserve their values, and clocks
in C ′ have their values resampled from their respective distributions.

Time steps are encoded by Td(s,~v) for d ∈ R>0. Such transition can only
take place iff there is no output transition enabled in the current state within
the next d time units. If that is actually the case then the system remains in
the same IOSA state s, and all clock values are decreased by d, viz. d units
of time are spent on state s.

The IOSA modelling formalism was designed to allow the parallel compo-
sition of several system components. Owing to its input/output foundations,
output actions are autonomous and can only synchronise with homonymous
input actions; in other words, synchronization between output actions of
different components is not allowed. Further technical aspects need to be
accounted for prior to defining a synchronisation mechanism, like name clash-
ing of the clocks. The following definitions taken from [DLM16] formalise the
notion of parallel composition for IOSA.
Definition 20. Given two IOSA I1 = (S1, A1, C1,−→1, s

1
0, C1

0) and
I2 = (S2, A2, C2,−→2, s

2
0, C2

0), these are compatible if they do not share
output actions nor clocks, that is, if AO

1 ∩AO
2 = ∅ and C1 ∩ C2 = ∅.
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Definition 21 (IOSA composition). Given two compatible IOSA I1 and I2,
its parallel composition I1 ‖ I2 is a tuple (S,A, C,−→, (s1

0, s
2
0), C0) where:

• S = S1 × S2,
• A = AO ]AI s.t. AO = AO

1 ]AO
2 and AI = (AI

1 ]AI
2 ) \AO,

• C = C1 ] C2,
• C0 = C1

0 ] C2
0 ,

• −→ is the smallest relation defined by the following rules:

s1
C,a,C′

−−−−→1 s
′
1

(s1, s2) C,a,C′
−−−−→ (s′

1, s2)
a ∈ A1\A2

s2
C,a,C′

−−−−→2 s
′
2

(s1, s2) C,a,C′
−−−−→ (s1, s′

2)
a ∈ A2\A1

s1
C1,a,C′

1−−−−−→1 s
′
1 s2

C2,a,C′
2−−−−−→2 s

′
2

(s1, s2)
C1∪C2,a,C′

1∪C′
2−−−−−−−−−−→ (s′

1, s
′
2)

Definition 21 provides structural rules to build the (syntactic) parallel
composition of two compatible IOSA, but it does not give any insight on
whether the resulting tuple is itself an Input/Output Stochastic Automaton.
For that purpose [DLM16] show that the constraints from Definition 17 of
IOSA are also satisfied by I1 ‖ I2 .

Theorem 8 (IOSA are closed over parallel composition, [DLM16]). Let I1 and
I2 be two compatible IOSA. Then I1 ‖ I2 is also an IOSA.

A closed IOSA is an Input/Output Stochastic Automaton resulting from
the parallel composition of two or more IOSA, where all synchronizations
have been resolved. Definition 21 thus ensures that a closed IOSA will have
no input actions, i.e. AI = ∅.

[DLM16] shows that closed IOSA are deterministic, which makes them
amenable to analysis by discrete event simulation. An IOSA is deterministic
if (almost surely) at most one discrete transition is enabled at every time
point. Equivalently, [DLM16] call deterministic an IOSA which almost never
reaches a state where two different discrete transitions are enabled. The
formalisation of this concept, which is given next, requires resorting to the
NLMP semantics of the automaton.

Definition 22 (Deterministic IOSA). An IOSA I is deterministic whenever
in P(I) = (S,B(S), {Ta | a ∈ L}), a state (s,~v) ∈ S such that the set
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⋃
a∈A∪{init} Ta(s,~v) contains more than one probability measure, is almost

never reached from any initial state (init, ~v′) ∈ S.

By almost never [DLM16]mean that the measure of the set of paths leading
to a state (s,~v) ∈ S where 1 < |

⋃
a∈A∪{init} Ta(s,~v)|, is zero. Moreover,

Definition 22 requires the NLMP P(I) to satisfy the notions of time additivity,
time determinism, and maximal progress [Yi90]; all this is proved to hold in
[DLM16]. In particular, maximal progress means that whenever an output
transition is enabled, time cannot advance in a state, but rather the output
shall be performed first.

So far we have only described the nature and properties of the IOSA
modelling formalism. To apply the splitting simulation techniques from this
thesis to such formalism we would require to work exclusively with systems
satisfying Definition 22. Happily, [DLM16] show that once all synchronizations
have been resolved, the resulting fully composed IOSA is indeed deterministic
as per Definition 22.

Theorem 9 ([DLM16]). Every closed IOSA is deterministic.

This chapter is devoted to developing techniques which exploit the com-
positional nature of a system model. Theorem 9 enables us to choose
Input/Output Stochastic Automata as the modelling formalism with which
we will verify the efficiency of the methods introduced so far.

4.5 Automation and tool support

The overall theory and strategies supporting our compositional approach to
importance splitting has been covered in sections 4.1 to 4.4. This section
studies some practical aspects, aiming at the development of software tools
to implement such approach.

4.5.1 Selection of the thresholds

In the case studies presented along Section 3.5, the thresholds selection
mechanism was the object of many critiques. This was rather disappointing
since the algorithm implemented in the BLUEMOON tool, named Adaptive
Multilevel Splitting, has the advantage of dynamically moulding the selection
to the particular system under study.
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Our implementation of Adaptive Multilevel Splitting was shown in Algo-
rithm 2. It runs pilot simulations on the system model M, whose statistical
evaluation w.r.t. the importance values observed yielded the threshold impor-
tance values used later by RESTART. From the theoretical viewpoint, this
complemented nicely the static analysis of the system and of the rare event
used by Algorithm 1 to derive the importance function.

Its adaptability notwithstanding, Algorithm 2 proved to be quite sensitive
to the global splitting value selected, and even to the particular simulation run,
characterised by the seed fed to the Random Number Generator. In occasions
re-running the experiment produced better results, viz. faster convergence,
related to a different choice of thresholds—see e.g. Section 3.5.3.

This suggests the statistical properties of the algorithm are not optimal.
In that respect recall that the subroutine M.simulate_ams(s, n,m, f, sim) is
called once per iteration of the main loop, in order to select a threshold with
higher importance than the one previously selected. That routine launches n
simulations from state s with predetermined lifetime m ∈ R>0. The outcomes
of these simulations, in terms of importance values measured by the function
f , determines the next threshold.

Notice that making all n simulations start from the same state s introduces
a potentially high correlation in the outcomes of the runs. This is recognised
by [CDMFG12], who have developed a much more sound algorithm (from the
statistical point of view) named Sequential Monte Carlo.

The main difference between Sequential Monte Carlo and its predecessor
Adaptive Multilevel Splitting lies in the selection of the starting states at
each iteration of the main loop. With the idea of reducing the correlation
between the resulting runs, Sequential Monte Carlo chooses these states
independently from among all the states in the system. The only condition
they must comply to is having an importance value assigned by function f
greater than the last selected threshold.

In [CDMFG12] the states are particles generated from a Markov kernel.
Thus, drawing n independent and identically distributed new particles to
start simulations from, is only a matter of resampling from the kernel. In
contrast, from our simulation perspective on IOSA models, it makes more
sense to choose only among reachable states. Besides, since our scenario is
discrete, we can afford to choose states to which function f gives exactly the
importance value chosen as the previous threshold.

The simplified pseudocode of our implementation of Sequential Monte
Carlo is presented in Algorithm 5. We highlight that both the input and
the output are the same than for our implementation of Adaptive Multi-
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level Splitting, viz. Algorithm 2. The only substantial difference between
both algorithms is that subroutine choose_dist( · · ·) in Algorithm 5 is used
to select the starting states at each iteration of the main loop, and that
simulate_smc( · · ·) starts from n potentially different states, instead of start-
ing from a single state like simulate_ams( · · ·) does in Algorithm 2.

Particularly, M.choose_dist( · · ·) takes the array of states sim ∈ Sn+k

as one of its inputs. The general idea is to use the first n positions of
sim to find the new thresholds, storing there the states resulting from pilot
runs launched for that purpose. In contrast, the last k positions of sim
hold states with the same importance as the last threshold found. At each
step, M.choose_dist( · · ·) launches n pilot runs; these will start from states
randomly sampled from the last k positions of sim, i.e. from a random sample
of the last threshold found. The resulting states of those n simulations, i.e.
those which achieved maximum importance, will be stored in the first n
positions of sim, to check whether a new (higher) threshold has been found.

Even more in detail, the subroutine M.choose_dist(sim, n, k, t, f) per-
forms n independent simulations, which run until a state to which f : S → N
assigns importance t ∈ N is found. The starting states for these simulations
are randomly chosen from the states at position n, n + 1, . . . , n + k − 1 of
sim. Upon reaching a state with importance equal to t, each of the n simula-
tions stops and saves such state in the corresponding i-th position of sim,
for i ∈ {0, 1, . . . , n − 1}. Finally, k states from among those n states are
randomly selected and copied into positions n, n+ 1, . . . , n+ k− 1 of sim, to
be used as initial states in the next invocation of choose_dist( · · ·).
Three more remarks will be useful to better grasp Algorithm 5:

1. sort(sim, f, i, n) sorts the states of the array sim which are in positions
i, i+ 1, . . . , i+ n− 1, in increasing order according to the values that
function f : S → N assigns them;

2. M.simulate_smc(sim, n,m, f) operates like simulate_ams( · · ·) from
Algorithm 2, only it starts the n simulations from the states at positions
0, 1, . . . , n− 1 of the array of states sim, and leaves in those positions
the states resulting from such simulations;

3. when an iteration cannot find a new threshold, the main loop is broken
(instruction break loop) and we fall back on choose_remaining(T, f)
which, observing that T.back() < max(f), chooses thresholds between
T.back() and max(f) following some heuristic guaranteed to terminate.
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Algorithm 5 Selection of thresholds with Sequential Monte Carlo.

Input: module M
Input: importance function f : S → N
Input: simulations setup k, n,m ∈ N>0, k < n

Var: sim[n+ k] Type: array of states
Var: T Type: queue of integers {the thresholds}
sim[0, 1, . . . , n+ k − 1] ← M.initial_state()
T.push(f(sim[0]))
repeat
M.simulate_smc(sim, n,m, f)
sort(sim, f, 0, n)
if T.back() < f(sim[n− k]) then

T.push(f(sim[n− k])) {new threshold found}
M.choose_dist(sim, n, k, T.back(), f)

else
break loop {failed to find higher threshold}

end if
until T.back() = max(f)
choose_remaining(T, f)

Output: queue with threshold values T

The fact that Algorithm 5 terminates after executing a finite number
of instructions follows the same lines than Proposition 7, which proves
termination of Algorithm 2. For the sake of completeness a sketch of the
proof is included below, together with the formal statement of termination.

Proposition 10 (Termination of Algorithm 5). Let M be a finite IOSA model,
i.e. M = (S,A, C,−→, s0, C0) s.t. S and A are finite. Let also f be an
importance function with image on N, and k, n,m ∈ N, k < n. Then, from
those inputs, Algorithm 5 terminates after executing a finite number of
instructions.

Proof (sketch). Since S is finite and the main loop selects a new higher
threshold on each iteration, there is a maximum finite number of iterations
the loop can perform. The fact that routine simulate_smc( · · ·) performs a
finite number of steps is proved analogously to the approach from Proposi-
tion 7 for simulate_ams( · · ·). Moreover, imposing an upper bound to the
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number of steps that each simulation launched by choose_dist( · · ·) can
perform, yields finite termination for that subroutine. Finally and by hypoth-
esis, choose_remaining( · · ·) terminates after executing a finite number of
instructions. 2

4.5.2 IOSAmodel syntax

Proposition 10 above speaks of simulations run on finite IOSA. However, this
modelling formalism has been presented in Section 4.4 from a purely theoretic
perspective, just as it was developed by [DLM16]. To choose IOSA as the
language in which our system models are to be expressed, we need a concrete
syntax whose grammar shall produce automata complying to Definitions 17
and 22.

To that aim we have developed the following syntax†, which we will
present informally as we did with the PRISM input language in Section 3.3.1.
The constructs of this IOSA model syntax are, as a matter of fact, quite
similar to those of PRISM, with the major addition of variables of type clock
whose values must be sampled from stochastic distributions. We next provide
an exhaustive list of differences between the PRISM input language as used in
this thesis, and the IOSA model syntax to be used for experimentation in
the sections to come:

• at global scope only constants, properties, and modules can be defined;

• constants must be of either Boolean, integral, or floating point type;

• properties can be specified either in a dedicated file, or in the model
file enclosed in a properties...endproperties environment;

• property queries are specified one per line and are either of type

� transient, following the format P( !stop U rare ), or
� steady-state, following the format S( rare ),

where stop and rare are Boolean-valued expressions representing the
stopping and rare event conditions respectively;

• variables can only appear within a module body, viz. enclosed in a
module...endmodule environment;

† My colleague Raúl E. Monti and my advisor Pedro R. D’Argenio were majorly in charge
of this task; credit should go to them.
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• variables must be of either Boolean, (ranged) integral, or clock type;

• each clock variable must be mapped to exactly one continuous prob-
ability function, and can only be assigned randomly chosen values,
resulting from a sampling of such function;

• non-empty labels in the edges of a module must be decorated either
with ? to signify that it is an input action (and thus an input edge), or
with ! to signify that it is an output action (resp. output edge);

• an empty label indicates a non-synchronizing output edge;

• an empty Boolean guard in an edge is interpreted as true;

• a semicolon immediately following symbol -> is interpreted as NOP;

• besides a Boolean guard, output edges must declare one clock name
between the character @ and the symbol ->, which links that clock
variable to the concrete output transitions represented by the edge.

To show how this syntax looks like, we present in Code 4.3 an extract of
a model described using the IOSA model syntax. The system represented is
the modularised tandem queue introduced in Code 3.3. Incidentally, since
all clock variables are mapped to the exponential distribution, the resulting
IOSA model is equivalent to a CTMC, as expected.

Code 4.3: IOSA model for the tandem queue (extract)

1 const int c = 8; // Capacity of both queues
...

14 module Arrivals
15 clk0: clock; // External arrivals ~ Exponential(lambda)
16 [P0!] @ clk0 -> (clk0’= exponential(lambda));
17 endmodule
18
19 module Queue1
20 q1: [0..c];
21 clk1: clock; // Queue1 processing ~ Exponential(mu1)
22 // Packet arrival
23 [P0?] q1 == 0 -> (q1’= q1+1) & (clk1’= exponential(mu1));
24 [P0?] q1 > 0 & q1 < c -> (q1’= q1+1);
25 [P0?] q1 == c -> ;
26 // Packet processing
27 [P1!] q1 == 1 @ clk1 -> (q1’= q1-1);
28 [P1!] q1 > 1 @ clk1 -> (q1’= q1-1) & (clk1’= exponential(mu1));
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29 endmodule
...

43 properties
44 P( q2 > 0 U q2 == c) // transient
45 S( q2 == c ) // steady-state
46 endproperties

Notice that the single edge of module Arrivals in line 16 of Code 4.3,
is an output edge since its action label P0 is decorated with ! . Its Boolean
guard (between characters ] and @) is empty and thus equivalent to true.
Moreover, this output edge is associated to the clock clk0, which is mapped
to an exponential probability density function of rate lambda.

The output action P0 from module Arrivals synchronises with the input
action P0 from module Queue1, i.e. with any of the edges in lines 23–25. The
Boolean guards of those edges form a partition of the range of the integral
variable q1. Therefore, the output edge of module Arrivals is always enabled
from a logical point of view, and will synchronise with exactly one of the
input edges in lines 23–25. From a temporal point of view and by definition
of IOSA, the output edge becomes enabled when clock clk0 expires.

This synchronisation mechanism resembles that of the PRISM model for
the tandem queue from Code 3.3. Such coincidence is to be expected, since
the IOSA model syntax was originally inspired in the PRISM input language.

Notice that the effects of an edge, i.e. the consequences of taking the edge
which are described after the symbol ->, appear enclosed in parentheses and
concatenated with the character &. For instance the input edge in line 23 has
two effects: incrementing by one the value of the integral variable q1, and
assigning a fresh random value to the clock variable clk1, sampled from an
exponentially distributed probability density function of rate mu1.

Notice in particular the input edge in line 25 of Code 4.3. This edge has
an empty effect, viz. a semicolon appears immediately following ->. This is
interpreted as a NOP or SKIP, that is, the absence of an effect. Semantically
that edge represents a packet trying to enter a fully occupied first queue,
which is promptly discarded.

In Code 4.3 the property queries are included in the model file, and hence
appear enclosed in a properties. . . endproperties environment. The property
in line 44 is transient: it asks the probability of observing a saturated second
queue before the queue empties. The property in line 45 is steady-state: it
asks the time proportion that the second queue spends in a saturated state,
viz. the long run probability of a saturation in that queue.
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4.5.3 Finite Improbability Generator

We have developed the software tool FIG, which implements the compositional
approach to multilevel splitting described in this chapter. It is written in
pure C++ and is standalone software. The full name of the tool is Finite
Improbability Generator, owing to Douglas Adam’s masterpiece. FIG is freely
available at http://dsg.famaf.unc.edu.ar/tools under the terms of the General
Public License (GPL v3).

The inputs, that is the model file and property queries, must be specified
following the IOSA model syntax described in Section 4.5.2. From now on
we will assume that the property queries are specified within the file where
the model is described, as in Code 4.3.

Remarkably, FIG also supports (certain types of) models described in
the jani model specification format version 1.0 (JANI, [BDH+17]). On the
one hand the IOSA formalism subsumes CTMC, so continuous-time Markov
chains described in JANI can be read-in by the tool. On the other hand
Stochastic Timed Automata (STA) subsume IOSA, and FIG can operate
with certain STA models described in JANI. Specifically, deterministic STA
complying with Definitions 17 and 22 can be accepted by the tool.

The most basic invocation of FIG requires three mandatory options:
<model>, <termination>, and <strategy>. Their syntax and semantics can be
briefly described as follows:

<model> The path to the file with the IOSA (or JANI) model descrip-
tion and property queries.

<termination> The stopping criterion (or criteria). It can be:

--stop-conf to simulate until the specified confidence coefficient and
relative precision are achieved. Those two parameters
must be numbers in the open interval (0, 1);

--stop-time to simulate for the specified amount of (wall-clock)
time, described in the format <digit>+[<s/m/h/d>].

<strategy> The strategy used to simulate. It must be one of:

--flat to perform standard Monte Carlo simulations;
--amono to perform RESTART simulations using an automatic

monolithic importance function, built using the ap-
proach from Chapter 3;

https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy
http://dsg.famaf.unc.edu.ar/tools
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
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--acomp to perform RESTART simulations using an automatic
compositional importance function, built using the
approach from this chapter and a composition operand
(or strategy) given as mandatory parameter;

--adhoc to perform RESTART simulations using an ad hoc im-
portance function specified by the user as mandatory
parameter.

The order of the options is arbitrary. For instance the line

>_ fig model.sa --flat --stop-conf .9 .4

invokes the tool to perform standard Monte Carlo simulations on the IOSA
file model.sa. For each of the property queries specified within the file,
simulations will be launched until a confidence interval of 90% confidence
level and 40% relative precision (i.e. a relative error of 20%—see Definition 6)
is built around the estimated value of the property.

Both <model> and <strategy> are simple options, whereas <termination>
is a multi-option. This means several stopping criteria can be specified, and
independent estimations are run to meet each of them. For instance

>_ fig model.sa --amono --stop-time 5m --stop-conf .9 .4

launches, for each property query specified in model.sa: first an estimation
lasting 5 minutes of (wall time) execution, for which typical confidence
intervals around the estimate are reported; and then an estimation which
will run until an interval of 90% confidence level and 40% relative precision
is built around the estimate.

Since the --amono option was specified in the command above, all those
simulations will use multilevel splitting. Like BLUEMOON, FIG implements
RESTART to perform splitting simulations. The --amono option makes FIG

build an (automatic) monolithic importance function for each property,
subsequently used in the RESTART simulations.

Unlike BLUEMOON, the FIG tool does not require to be told which kind of
simulation (e.g. transient vs. steady-state) to run for each property query.
This is deduced from the logical expression: for transient properties several
independent simulations are launched, whose average yields the desired
estimate; for steady-state properties the batch means method is employed.

As earlier stated, choosing the --adhoc strategy requires the user to
provide as parameter the importance function he desires to use. Such function
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must have image on the natural numbers, and any constant or variable from
the system model can appear in the arithmetic expression that defines it.
For instance if tandem_queue.sa contains the IOSA model of the tandem
queue from which Code 4.3 was extracted, then

>_ fig tandem_queue.sa --adhoc "q1+5*q2" --stop-conf .9 .4

will run RESTART simulations to estimate the value of both properties (recall
these were P( q2>0 U q2=c ) and S( q2=c ) ), using the ad hoc importance
function which adds five times the number of packets in the second queue to
the number of packets in the first queue, i.e. q1+5*q2.

The situation is quite different for the --acomp option, although a param-
eter is also mandatory. A composition operand can be chosen, for example

>_ fig tandem_queue.sa --acomp "+" --stop-conf .9 .4

invokes the tool to perform estimations like in the situation described
above, but using an (automatic) compositional importance function for
the RESTART simulations. Addition is specified as composition operand,
meaning the global importance function used will be A+Q1+Q2, where A, Q1,
and Q2 stand for the local importance functions built for modules Arrivals,
Queue1, and Queue2 respectively. Recall these functions are built anew for
each property query, since the definition of the rare event could differ from
one query to the next.

Rather than a composition operand, the --acomp option can also take
an ad hoc composition strategy, defined by the user in the way described in
Section 4.3.1. It is worthy to mention that unlike the --adhoc option, the
arithmetic expression passed as parameter to --acomp must contain names
of modules of the system, which are interpreted as the local importance
functions built for such modules. This means that the command

>_ fig tandem_queue.sa --acomp "Arrivals+Queue1+Queue2" \
--stop-conf .9 .4

imitates the previous invocation, which used addition as composition operand.
Much more importantly, this facility allows a straightforward implementa-

tion of the ring/semiring strategy from Section 4.3.3. Suppose e.g. the triple
tandem queue modelled with the PRISM input language in Code 4.2, is de-
scribed with the IOSA model syntax in the file 3tandem_queue.sa. Assuming
the same names are given to the modules, the command
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>_ fig 3tandem_queue.sa \
--acomp "Queue1+max(Queue2,Queue3)" --stop-time 2h

uses the semiring (max,+) as described in Section 4.3.3 to compose the local
importance functions built for the modules of the queues.

So far the importance function specification has been discussed, but
multilevel splitting simulations (i.e. whenever --adhoc, --amono, or --acomp
are chosen) also require selecting the thresholds prior to running RESTART.
To that aim and by default FIG runs Algorithm 5, using the importance
function built for the current property query. This can be changed by means
of the option --thresholds to use Adaptive Multilevel Splitting, a fixed (e.g.
non-adaptive) strategy, or pure Sequential Monte Carlo. Algorithm 5 can
be described as implementing a hybrid strategy: upon a failure of Sequen-
tial Monte Carlo the subroutine choose_remaining( · · ·) is invoked, which
implements a non-adaptive strategy guaranteed to terminate.

FIG can take several additional options to customise the estimation proce-
dures. The full list together with their invocation syntax and some practical
examples is obtained with the --help option. We next describe the most
relevant among these options, two of which were used to run the experiments
reported in Section 4.6. Also and from here onward, estimations whose
termination is specified using the --stop-conf option will be referred to as
confidence-bound estimations or merely confidence estimations. Analogously
time-bound estimations or simply time estimations will refer to estimations
whose termination is specified by means of the --stop-time option.

Regardless of the particular stopping criteria chosen, a maximum wall-
clock execution time can be imposed by means of the option --timeout,
which takes the same mandatory parameter than the --stop-time option.
The --timeout option is very useful for confidence-bound estimations, when
one has no idea whatsoever how long the estimation could take. Instead for
time-bound estimations, if the --timeout option is given then simulations
will last for the shortest of the two time lapses.

We emphasise that the layout of the output differs between time (or
timed-out) estimations and confidence estimations. If the estimation finished
upon reaching the desired confidence level and relative precision for the
interval, the final outcome looks as follows:

>_ ~~~~~~~~~
· FIG ·

~~~~~~~~~
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This is the Finite Improbability Generator.
Version: 1.1
Build: Release

...
RNG algorithm used: pcg32
Estimating P( (q2>0) U (q2==8) ),
using simulation engine "restart"
with importance function "concrete_coupled"
built using strategy "auto"
with post-processing "(null)"
and thresholds technique "hyb"
[ 2 thresholds | splitting 5 ]
Confidence level: 80%
Precision: 40%
RNG seed: 1944391357620130122 (randomized)
· Computed estimate: 5.34e-06 (7344384 samples)
· Computed precision: 1.67e-06
· Precision: 2.13e-06
· Confidence interval: [ 4.27e-06, 6.40e-06 ]
· Estimation time: 29.04 s

Notice there is a “Computed precision” and a plain “Precision.” The former
is the empiric interval width achieved using the techniques from Section 3.3.4.
The latter is the (theoretic) relative precision requested, which in this case
equals 5.34e-06× 0.4 = 2.13e-06.

Alternatively, estimations could stop due to timing reasons, in which case
there is no theoretic precision to report because the theory from Section 3.3.4
cannot be applied. In such cases a set of confidence intervals is displayed,
built with the gathered data for typical confidence levels, e.g.

>_ ...
[ 2 thresholds | splitting 5 ]
Confidence level: 80%
Precision: 40%
Timeout: 00:00:10
RNG seed: 17463016430344695793 (randomized)
· Computed estimate: 6.54e-06 (2508288 samples)
· 80% confidence

- precision: 3.00e-06
- interval: [ 5.04e-06, 8.04e-06]
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· 90% confidence
- precision: 3.86e-06
- interval: [ 4.61e-06, 8.47e-06]

· 95% confidence
- precision: 4.59e-06
- interval: [ 4.24e-06, 8.84e-06]

· 99% confidence
- precision: 6.04e-06
- interval: [ 3.52e-06, 9.56e-06]

· Estimation time: 10.00 s

It is important to remark that according to Algorithm 4, functions built
automatically use zero as minimum importance value. This means that the
local initial state of a module is assigned the value 0 by its local importance
function, which can be problematic for the compositional approach if the
product is used either as composition operand or in a composition strategy.

Take for instance the command

>_ fig tandem_queue.sa --acomp "*" --stop-conf .8 .6

which specifies the product to be used as composition operand for the
compositional approach. Say the rare event is a saturation in both queues.
Then the global importance function will yield the value 0 whenever the first
queue is in its initial local state, regardless of the occupancy in the second
queue. This is clearly at odds with the desired behaviour. We have referred
to this issue in Section 4.3.4 as the nullification problem.

Mostly because of this inconvenience and in line with Section 4.3.4, FIG

offers a --post-process option to modify the importance of the states once
the importance functions have been computed. The (local) importance values
of the states can therefore be increased or exponentiated, solving the problem
caused by zero being the absorbing element of ∗.

Revisiting the previous situation, the command

>_ fig tandem_queue.sa --acomp "*" --stop-conf .8 .6 \
--post-process shift 1

increases by one the local importance values in all the system modules. That
means that the lowest value returned by a local importance function is 1
rather than 0. Therefore the nullification problem is solved, since e.g. a first
queue situated in its initial state will have local importance 1.
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More in detail, the --post-process option takes two parameters:

<type> the kind of post-processing to apply, which can be either shift
to increase/decrease the importance computed for each state by
some value, or exp to apply exponentiation using as exponent the
importance of the state;

<arg> the numeric argument to use, which for shift can be any integral
constant (the amount to increase/decrease each value by), and for
exp must be a floating point number greater than 1.0 (the base to
use during exponentiation).

To illustrate the use of exponentiation consider the command

>_ fig tandem_queue.sa --acomp "*" --stop-conf .8 .6 \
--post-process exp 2.0

This means that in every module, the importance value i of each local state
will be replaced by the value 2i. Again this suffices to solve the nullification
problem, since 2i > 0 for all i ∈ N and in particular 20 = 1, viz. the lowest
importance of any queue will be the neutral element of ∗.

This section concludes discussing the interaction of the tool with the JANI
model specification format by [BDH+17]. FIG can operate as bidirectional
translator between the IOSA and JANI formalisms, for which the options
--to-jani and --from-jani are offered. When any these options is specified
the tool assumes the translation role and refrains from running estimations.
Nonetheless FIG can be fed a file containing an (IOSA-compatible) JANI model;
in such case, upon a successful implicit translation, estimations will be carried
out as usual. By means of example let tandem_queue.jani be a file with
some JANI model corresponding to the modularised tandem queue discussed
so far. Then the command

>_ fig tandem_queue.jani --amono --stop-conf .95 .6

invokes the tool to perform the usual RESTART simulations employing the
monolithic importance function, and estimations will finish once an interval of
95% confidence level and 30% relative error is achieved. The translation from
the JANI format of the file to the IOSA syntax compiled by FIG is transparent
to the user.

Regarding the translation and as discussed, only CTMC and certain
type of deterministic Stochastic Timed Automata (STA) comply with the
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IOSA formalism. When exporting to JANI with the --to-jani option an
IOSA-compatible STA is generated. When importing from JANI with the
option --from-jani several checks are due. The most basic ones comprise the
absence of global variables and employing the broadcast-like synchronisation
of IOSA. Any CTMC model complying to that should be accepted. STA
are more involved since they allow several clock manipulations unknown
to Stochastic Automata in general (e.g. setting a deterministic time value
in a clock variable), and they also allow several enabling clocks per edge.
Hence the constraints from Definition 17 must be thoroughly revised when
importing from an STA JANI model:

1. first, constraints (a) and (b) are syntactically checked,

2. then a tentative IOSA model is built,

3. and finally constraints (c) to (g) are evaluated.

Upon success, i.e. if the resulting model described in the IOSA model syntax
complies with Definition 17, the file containing the translated model is output.
Otherwise an error message is displayed and translation aborts.

4.6 Case studies

Several systems were taken from the RES literature and analysed with FIG.
The general description of these systems and the results from experimentation
are shown in this section. The Input/Output Stochastic Automata used for
such purpose are listed in Appendix A.

4.6.1 Experimentation setting

All models studied here are described in the IOSA model syntax. Some
of the Markovian case studies analysed in Section 3.5 are revisited in this
section. These tests served to validate the correct functioning of the FIG tool.
Non-Markovian systems, which use clocks associated to e.g. the log-normal
distribution, are also studied in this section.

Following the general format of Section 3.5 we launched independent
experiments for each case, perfecting an interval around a point estimate
until some convergence or time criterion was reached. Some experiments
ran until meeting a confidence criterion, or were truncated upon exceeding
an execution timeout; in these cases the measure of interest is the speed of
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convergence. Notice this was the setting for all experiments in Section 3.5.
Other experiments ran for a predefined execution time bound; in these cases
the measure of interest is the precision achieved, where the goal is to build
the narrowest possible interval.

Two computer systems where employed. The server JupiterAce features
a 12-cores 2.40GHz Intel Xeon E5-2620v3 processor, with 128 GiB 2133MHz
of available DDR4 RAM. The nodes of the cluster Mendieta count instead
with 8-cores 2.70GHz Intel Xeon E5-2620 processors, each with access to a
DDR3 RAM memory of 32 GiB and 1333MHz. For each case study we specify
whether computations were done in JupiterAce or Mendieta. We point out
however that FIG uses one core per estimation.

As indicated, some Markovian systems were imported from the previous
chapter and analysed in the same way, that is, convergence was tested for
decreasing values of the rare event probability γ. Remarkably this includes the
database system with redundancy, which could not be evaluated thoroughly
in Chapter 3 due to the limitations of the monolithic approach.

Two non-Markovian systems are also introduced in this section, whose
analysis is carried out somewhat differently. The triple tandem queue that
we present in Section 4.6.3 was tested for different configurations of its
parameters, all of which yield roughly the same value of γ. Furthermore there
are two variants of the oil pipeline system we study in Section 4.6.6: in one
of them the system components fail according to exponentially distributed
clocks; the other variant uses clocks which sample time from the Rayleigh
distribution—i.e. a Weibull with shape parameter 2.

When applicable, we tested four simulation strategies for each model and
configuration: standard Monte Carlo, RESTART using ad hoc importance
functions, RESTART using the monolithic importance function from Chap-
ter 3, and RESTART using the compositional approach from this chapter.
Also, when the system model from the literature could be imitated exactly,
we checked the consistency of the confidence intervals obtained by comparing
them to the published values. Otherwise we verified that all simulation
strategies converged to similar values, e.g. checking whether all intervals
produced share a common region.

We present charts and tables displaying either the convergence times or the
precision of the intervals obtained, depending on whether the execution bound
was confidence criteria or time budget respectively. Time measurements
consider wall-clock time, including preprocessings like the compilation of the
model files and the selection of the thresholds.

In some cases the results evidence a high sensitivity to the choice of seed
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fed to the Random Number Generator routine (RNG). This is exacerbated by
the low replication we could perform: three to four independent experiments
were run for each configuration of each case study, which presents a risk from
the statistic viewpoint. Therefore, whenever unexpected or highly varying
results were observed, extra replications were performed to verify consistency.
This, on top of previous studies like the ones from [BDM17], accounts for the
reliability of the measurements we present along this section.

It will be noted that generally, the simulation times obtained are longer
than those presented before in Section 3.5, and also that the confidence
convergence criteria is laxer. In that respect we highlight that a simulation
step in PRISM involves accessing a matrix stored in memory, whereas in FIG

all the clocks from all the modules have to be updated to perform the same
task. This multiplication of floating point instructions per step is the price
to pay for handling arbitrary distributions.

Moreover, FIG has so far been developed for correctness and not for
efficiency. For instance, interval update is a trivially parallelisable task,
yet FIG does it sequentially. This and several other tweaks could speed-up
execution times significantly, but fall outside the goals of this thesis. In that
sense the tool can be considered prototypical.

In any case, all convergence times presented along this thesis are used
to compare the efficiency between the various strategies tested on each case
study. To achieve this comparison it suffices to ensure that, for each case
study, all the strategies being compared use the same hardware resources
and terminate by the same convergence criterion. That was precisely the
approach in Section 3.5 and also in this section. Obtaining faster executions
with our software tools can be the subject of further research.

4.6.2 Tandem queue

We repeated the experiment previously presented in Section 3.5.2, using the
IOSA model from Appendix A.6 to run simulations in JupiterAce. Recall
this system consists in a Jackson tandem network with two sequentially
connected queues, where the rates of arrival, first service and second service
are respectively (λ, µ1, µ2) = (3, 2, 6), and for which transient and steady-state
properties were evaluated.

Given this is a Markovian system, the results yielded by FIG for the IOSA
model from Appendix A.6 ought to coincide with those yielded by PRISM for
an equivalent model written in its input language. One such model, effectively
used to corroborate this claim, is presented in Appendix A.7.
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Transient analysis
The property of interest is P ( q2>0 U q2==c ), i.e. the likelihood of observing
a saturated second queue before it becomes empty, which we estimate start-
ing from the state (q1, q2) = (0, 1). We tested maximum queue capacities
C ∈ {8, 10, 12, 14}, for which the values of γ approximated by PRISM† are re-
spectively 5.62e-6, 3.14e-7, 1.86e-8, and 1.14e-9. Estimations were performed
under a 90 |40 CI criterion, that is, FIG had to build an interval with 90%
confidence level and 20% relative error for each configuration. The execution
timeout was 2.5 hours, within which FIG converged for each configuration
producing intervals containing the values reported by PRISM.

Three different importance functions were tested in the importance split-
ting simulations. The function denoted amono was automatically built by FIG

using the monolithic approach from the previous chapter. Instead, acomp
stands for the function built following the compositional strategy, which in
this case employed summation as composition operand. The third importance
function tested with RESTART was the best ad hoc candidate from our previ-
ous studies, viz. counting the number of packets in the second queue, denoted
q2. As before, standard Monte Carlo simulations are denoted nosplit.

The average of the wall times measured in three experiments are shown in
Figure 4.4. Recall we display one chart per splitting value, with the outcomes
of the nosplit simulations repeated in all four charts. The maximum queue
capacity C, tuned to variate the rarity of the event, spans along the x-axis.

In accordance with our previous study of this system, standard Monte
Carlo simulations could converge within the time limit only for the two
smallest values of C, and they were always the slowest. Contrarily, RESTART
simulations converged in all settings, with no clear winner among the three
functions. In several configurations the times of function q2 resemble that
of acomp. Notice that the rare event property involves solely a variable from
the second queue. Hence the local importance function of the first queue is
null, turning acomp into something very similar to the ad hoc function.

The global tendency of the RESTART simulations favours the greatest
splitting values. The technical output of FIG reveals that for each value of
C, the number of chosen thresholds does not increase as the splitting value
decreases from 15 to 2. This is undesirable, since spawning less offsprings
upon crossing a threshold upwards should be countered with the placement
of more thresholds. We believe this issue, from here onward denoted the

† Say the model from Appendix A.7 is in tandem.prism, then the exact command used is:
prism tandem.prism -const c=8:2:14 -pf ‘P=?[ q2>0 U q2=c ]’.
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Figure 4.4: Times for the transient analysis of the tandem queue

splittings-thresholds fiasco, is related to the continuum assumptions of the
theory behind Algorithm 5, and also to some implementation details of the
algorithm in FIG. We will elaborate further on the subject along this section.

In spite of such issue, the plots show that the monolithic function was
the least sensitive—though not by much—to the choice of global splitting
value, whereas acomp and q2 converged the fastest for the splitting values 10
and 15.

The plots also reveal a relatively bad performance of amono w.r.t. acomp
and q2, most notably for the splittings 10 and 15 when C = 10, and also for
splittings 5, 10, and 15 when C = 12. This is a most unwelcome surprise,
since the monolithic approach outperformed all ad hoc functions in the results
previously presented in Section 3.5.2. As discussed in that section, a superior
performance of the monolithic approach is expected in these kind of systems:
the queues are interconnected, hence all of them might need to be considered
when deriving the importance function.
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C = 10 C = 12

Splitting: 15 10 15 10 5
Num. Thr.: 3 5 4 6 8

amono 71 s 41 s 164 s 224 s 68 s
acomp 161 s 93 s 566 s 407 s 665 s
q2 137 s 86 s 657 s 395 s 594 s

Table 4.1: Convergence times for thresholds chosen ad hoc

New experiments were run for those configurations, to see whether this
was related to the splittings-thresholds fiasco, and to discard the influence of
the randomised seeds fed to the RNG. These experiments used a different, non-
adaptive thresholds selection mechanism offered by FIG, tuned here to ensure
that less splitting yields more thresholds. Table 4.1 details the outcomes:
remarkably, the monolithic function outperformed the other two in all runs
by factors ranging from 2x to 10x.

The results from Table 4.1 suggests that the monolithic function is actually
the one performing best in this system, and that the slow convergence times
from Figure 4.4 are mostly the result of the splittings-thresholds fiasco.

In any case this experiment shows that the compositional approach
introduced in this chapter is fully functional, and that it can match other
(very efficient) ad hoc approaches; all this without expanding the state space
of the fully composed model, and without requiring the user to specify an
importance function explicitly.

Steady-state analysis
Regarding long run simulations we are interested in the property S ( q2==c ),
i.e. the proportion of time that the second queue spends in a saturated state.
We tested maximum queue capacities C ∈ {10, 13, 16, 18, 21}, for which the
values of γ approximated by PRISM‡ are respectively 7.25e-6, 2.86e-7, 1.12e-8,
1.28e-9, and 4.94e-11. Estimations with FIG had to converge within 6 hours of
wall time execution achieving a 90 |40 CI. Again we corroborated that these
estimations converged to the values yielded by PRISM. The same importance
functions as in the transient case were employed.

The results obtained from an average among three experiments are pre-

‡ prism tandem.prism -const c=10:3:21 -pf ‘S=?[ q2=c ]’ -jor.
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Figure 4.5: Times for the steady-state analysis of the tandem queue

sented in Figure 4.5, following the same format than in the transient case.
The queue capacities tested (as well as the time limit) differ from the ones
used in Section 3.5.2, yet the behaviour of the standard Monte Carlo sim-
ulations is quite similar, converging reasonably fast only when C < 15. In
contrast, none of the RESTART simulations failed to meet the confidence
criterion within the time limit.

Leaving aside the case of C = 10, which anyway is the least rare and thus
the least interesting, convergence times are rather uniform for all importance
functions and for splittings 2, 5, and 10. We would have expected a better
performance of the monolithic approach w.r.t. acomp and q2, but as before
we believe that the splittings-thresholds fiasco is creating a distortion. In
particular this caused the anomaly of amono for splitting 15 and C = 16. The
specific problem behind such behaviour is detailed in Section 4.6.4.

Unfortunately, this distorting issue cannot be countered systematically
without a deep refactoring in the thresholds selection mechanisms of the FIG
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tool. We refer to this matter again in the concluding remarks of the thesis.
Be that as it may, the compositional approach performed very well, once

again suggesting that our technique can automate the derivation of a high
quality importance function, without expanding the state space of the fully
composed model.

As last remark we note that the shape of the (importance splitting) plots
resembles a logarithmic grow in the convergence times. Since the y-axis
is in log-scale this would suggest that RESTART is showing logarithmic
efficiency, with convergence times growing sub-exponentially as the rarity of
the event grows exponentially. This was not the case in the previous transient
study, where convergence times appear to grow exponentially, inversely to
the exponential decay of γ.

In that respect we note that RESTART was primarily devised for steady-
state studies—see [VAVA91,VA98,VAVA02,VA14]. In transient cases where
simulations need to be respawned at high rates, the costs incurred in the global
splitting mechanisms of RESTART may not pay off. Instead, strategies like
Adaptive Multilevel Splitting could lead to better results, where simulation
paths are spawned and truncated in a stepwise approximation to the set of
rare states. In Section 5.1 we briefly revisit the subject of implementing other
splitting simulation mechanisms in FIG.

4.6.3 Triple tandem queue

Consider a non-Markovian tandem network operating under the same prin-
ciples than the tandem queue from the previous section, but consisting of
three queues with Erlang-distributed service times§. The shape parameter α
is the same for all servers, but the scale parameters {µi}3i=1 differ from one
queue to the next. Arrivals into the system are exponential with rate λ.

The long run behaviour of this non-Markovian triple tandem queue was
studied in [VA09] starting from an empty system. The shape parameter is
α ∈ {2, 3} in all queues and the load at the third queue is kept at 1⁄3. This
means that the scale parameter µ3 in the third queue takes the values 1⁄6

and 1⁄9 when α is 2 and 3 respectively. The scale parameters µ1 and µ2 of
the first and second servers, as well as the thresholds capacity C at the third
queue, are chosen to keep the steady-state probability in the same order of
magnitude for all case studies.

§ Although this could be emulated using the exponential distribution, we will maintain a
non-Markovian approach.



168 COMPOSITIONAL I-SPLIT

We use the IOSA model presented in Appendix A.8 to run simulations
in JupiterAce. The property of interest is the steady-state probability of a
saturation in the third queue, i.e. S ( q3==c ). Following the same approach
from [VA09] we choose a value of γ in the order of 5 · 10−9. Thus the values
of (α, µ1, µ2, C) for the six case studies I–VI are

I: (2, 1/3, 1/4, 10) IV: (3, 1/9, 1/6, 9)
II: (3, 2/3, 1/6, 7) V: (2, 1/10, 1/8, 14)
III: (2, 1/6, 1/4, 11) VI: (3, 1/15, 1/12, 12).

Estimations had to achieve a 90 |40 CI within 4 hours of execution. Four
importance functions were tested in the splitting simulations: the monolithic
(amono) and compositional (acomp) functions which FIG can build automatically,
using summation as composition operand for acomp; an ad hoc function which
just counted occupation in the third queue (q3); and the ad hoc approach
(jva) from [VA09], which also considers the occupancy in the other queues
with weight coefficients—in the interval [0.2, 0.9]—specific to each case.

Results are presented in Figure 4.6. This experiment was also run three
times; the values in the plots show the average of the convergence times
measured. Case studies I–VI span along the x-axis of each plot.

As expected, standard Monte Carlo simulations failed to converge within
the 4 hours limit imposed in almost all cases. On the other hand RESTART
simulations converged in time in most settings, yielding an interval estimate
with the desired properties.

Case study II is quite curious because it was the only one in which nosplit
simulations converged, estimating the interval [6.13e-8, 9.20e-8]. Besides, not
only did they converge, but did so (with few exceptions, perhaps most notably
amono) faster than many RESTART simulations. This is not fortuitous and
can be be explained as follows:

• II is the least rare case study; compare it to III where point estimates
are around 1.69e-8, or V where they are around 3.40e-9, i.e. roughly
one order of magnitude smaller.

• II is the setting with the smallest queue capacity (e.g. V uses a value of
C twice as big as II), and thus the setting where splitting can produce
the least gain.

These arguments notwithstanding, there was always at least one RESTART
simulation outperforming standard Monte Carlo. See for instance amono for
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Figure 4.6: Times for the steady-state analysis of the triple tandem queue

splittings 2, 5, and 10, and also q3 for splittings 5, 10, and 15. In particular
for splitting 10 all RESTART simulations converged faster than nosplit.

Unfortunately, just like it happened with the tandem queue system, there
is much variability in the results for the different global splitting values tested.
This is most notable for splitting 2, where RESTART simulations converged
the slowest, some of them even producing timeouts in all three experiments
ran—see cases I, III, and V. Most importance functions converged the fastest
for the splitting value 10.

In spite of these problems with the global splitting, which are intimately
related to the selection of the thresholds as explained, these experiments
with the triple tandem queue contributed in three major ways:

1. even though the system can be encoded to fit in a Markovian setting,
our model employs the Erlang distribution, allowing a more compact
representation and also proving our claims regarding the generality of
our techniques and algorithms;
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2. once again the compositional approach performed quite well, showing
that a full state space expansion can be unnecessary to automate the
construction of a reasonable importance function;

3. amono always finished on time, and in almost all scenarios was either
the fastest or the runner up, which coincides with our expectations as
previously detailed in Section 4.6.2.

4.6.4 Queueing system with breakdowns

We repeated the experiment presented in Section 3.5.5 and originally studied
in [KN99], consisting in a queueing network where several sources (of types 1
and 2) send packets to a single buffer attended by a server. All sources, as
well as the server, can break down and get repaired later on. The system is
Markovian with rates of component repair, component failure, and packet
production/processing (α1, β1, λ1) = (3, 2, 3), (α2, β2, λ2) = (1, 4, 6), and
(δ, ξ, µ) = (3, 4, 100) respectively for sources of type 1 and 2 and for the
server.

We use the IOSA model from Appendix A.9 to study the transient be-
haviour of the system by running experiments in JupiterAce. More precisely
we are interested in the probability of observing a saturated buffer before
it becomes empty, starting with a single buffered packet and all system
components broken but for one source of type 2. The corresponding property
query is P ( !reset U buf==K ).

We studied this system for the buffer capacities K ∈ {40, 60, 80, 100},
with corresponding values of γ equal to 4.59e-4, 1.25e-5, 3.72e-7, 9.59e-9.
These values were approximated by PRISM in the equivalent CTMC from
Section 3.5.5 (see Appendix A.4), and the convergence of FIG to such values
was checked for all settings. In particular estimations had to achieve a
90 |40 CI within 3 hours of wall time execution. Three importance functions
were tested in the splitting simulations, namely the monolithic (amono) and
compositional with summation (acomp) functions built by FIG, and the best
ad hoc variant resulting from our studies in Section 3.5.5, i.e. counting the
number of packets in the buffer (buf).

Figure 4.7 shows the average times to convergence, obtained from four
experiments run with FIG. The behaviour of the standard Monte Carlo sim-
ulations resembles the previous experiments with BLUEMOON, where it had
converged only for K < 80. This time however, for K = 40, it took nosplit
simulations about three minutes to build an interval with the desired prop-
erties. With the CTMC model of the queue with breakdowns running on
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Figure 4.7: Times for the transient analysis of the queue with breakdowns

BLUEMOON it had taken less than 10 seconds. Clearly and as expected, updat-
ing several clocks in several modules (e.g. like in IOSA) has worse performance
than accessing a matrix (e.g. like in a CTMC transitions representation).

Moreover this provided an advantage for the splitting simulations, since
the sheer brute force of nosplit is then less advantageous than selecting
(proper) resplitting points like RESTART does. As a consequence, for K = 40,
all but one of the splitting configurations (viz. buf for splitting 15) were faster
to converge than standard Monte Carlo.

Once again the high variability of the results for the different global
splitting values complicates a clean comparison among the three importance
functions. Overall however none of them clearly outperformed the rest. We
use this, as we have done before, to highlight that the compositional approach
can yield reasonable results even in settings where a monolithic function has
a theoretic advantage.

A striking peculiarity of Figure 4.7 are the incongruously long convergence
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times of: buf for K = 40 and splitting 15 (one configuration); and both buf
and amono for K = 60 and splittings 5, 10, and 15 (six configurations). In
particular for K = 60, five out of these six configurations took longer to
converge than for K = 80.

Studying the technical output of FIG reveals that from the thresholds
selected in those cases, half or more of them were actually not chosen by the
adaptive component of Algorithm 5. At some point in those experiments,
an iteration of Sequential Monte Carlo had failed to find a higher thresh-
old, and the algorithm fell back to the deterministic selection provided by
choose_remaining( · · ·). This was observed in 1–3 out of the 4 experiments
run for those configurations. Precisely those experiments were the ones
yielding the incongruously long convergence times reported.

Evidently, such behaviour is problematic. The best efforts are made
to mimic an intelligent selection of thresholds in choose_remaining( · · ·),
taking into account the splitting value used, the post-processing (if any), and
the importance range left to cover after (our implementation of) Sequential
Monte Carlo has failed. However, choose_remaining( · · ·) implements a
deterministic selection, which does not consider the stochastic behaviour of
the model like only an adaptive algorithm can.

To observe this early fail of the adaptive component in Algorithm 5, which
we identify as the main cause behind the splittings-thresholds fiasco, leads
us to believe that a different approach should be sought. Some reflections on
a potential solution are outlined in Section 5.1.

4.6.5 Database system with redundancy

Recall the model of a database facility introduced in Example 7 to show
the limitations of the monolithic approach. The system has a characterising
redundancy R ∈ N (R > 1) and its components are processors (two types of
them), disk controllers (two types of them), and disk clusters (six of them).
Denoting by unit any type of processor, any type of controller, and any disk
cluster (i.e. there are ten units in total), the system is operational inasmuch
less than R components have failed in any unit.

This Markovian database was originally studied in [GSH+92] and then
using RESTART in e.g. [VA98]. The failure rates of processors, controllers,
and disks are respectively µP , µC , and µD. Furthermore all these components
can fail with equal probability in one of two types: failures of type 1 involve
a repair rate equal to 1.0, and those of type 2 have a repair rate of 0.5. Rare
event analyses focus on system unavailability, e.g. γ reflects the proportion
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of time the database is not operational.
We ran experiments in Mendieta with models like the one presented

in Appendix A.10, which describes (a summarised version of) a system for
redundancy R = 2. The property at the bottom queries the steady-state
probability of having any two (R) components failed in the same unit:

S ( (d11f & d12f) | (d11f & d13f) | · · · | (p21f & p22f) ) .

Since the IOSA formalism associates a single probability density function
with each clock, the inter-processor failure hypothesis is dropped (cf. [VA98]).
Moreover, our IOSA models have repair clocks individual to each component,
in contrast to the single (sequential) repairman scheme from [VA98,VA07a].

We studied systems with failure rates (µP , µC , µD) = (1/50, 1/50, 1/150) and
redundancy values R ∈ {2, 3, 4, 5}. Due to the long times FIG took to converge
for the larger models, this experiment follows a different scheme than those
presented before. Rather than requesting estimations to achieve a predefined
confidence criterion, we impose an execution time budget, and measure the
precision of the intervals built by each strategy at timeout. The goal is to
estimate the narrowest possible interval in the available time, where the time
budgets for the redundancy values R = 2, 3, 4, 5 are 10 seconds, 2 minutes,
20 minutes, and 6 hours respectively.

We highlight that our models are incomparable to those studied by
[GSH+92,VA98,VA07a] due to the different hypotheses we use in order to model
the database with IOSA. Besides, even though the database is Markovian,
PRISM cannot be utilised to approximate the results in an equivalent CTMC,
owing to the physical memory issues reported in Section 3.6. As a workaround,
to verify correctness in our estimations we compared the confidence intervals
yielded by all runs, corroborating that they share a common region. The
mean values (and the standard deviation) thus obtained from the central
point estimates for each redundancy are:

R : 2 3 4 5
avg{γ̂i} : 6.86e-3 5.14e-5 3.81e-7 8.06e-9

stdev{γ̂i} : 1.46e-4 2.34e-5 4.37e-7 1.49e-8 .

Five importance functions were tested with RESTART. The monolithic
approach is ruled out due to the memory issues addressed. The compositional
approach with summation as composition operand is denoted ac1. Since each
component can be either failed or operational, its local importance function
will take values 1 and 0 respectively. Hence ac1 counts the number of failed
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components in the system. In spite of its simplicity, this strategy builds a
much richer importance structure than the monolithic approach could.

The compositional function denoted ac2 makes a distinction based on the
component type, under the hypothesis that their failure rates may be different
and thus they should not be mixed up (cf. ac1). Using the exponentiation
post-processing, the local importance functions of all disks are multiplied
together (FD

.= ∏6,R+2
i,j=1,1Di,j), and the same is done with all controllers

(FC
.= ∏2,R

k,`=1,1Ck,`) and all processors (FP
.= ∏2,R

k,`=1,1 Pk,`). The global
importance function is the sum of these values: FD + FC + FP .

Function ac3 makes an even finer distinction, separating the product
of the disks per cluster (F iD

.= ∏R+2
j=1 Di,j for clusters 1 6 i 6 6), and

of the controllers and of the processors per type (F kC
.= ∏R

`=1Ck,` and
F kP

.= ∏R
`=1 Pk,` for types 1 6 k 6 2). Again, the global importance function

is the sum of these values: ∑6
i=1 F

i
D + ∑2

k=1 F
k
C + ∑2

k=1 F
k
P .

Function ac4 uses the (+, ∗) ring in what can be regarded as a further
refinement in the same direction than ac2 and ac3: ac2 would be the most
coarse grained, mashing all components of the same type together; ac3
contemplates the divisions of the system in independent units; and ac4
distinguishes every possible configuration leading to a system failure.

Finally, function ah has two faces. On the one hand it can be regarded as
a compositional variant implementing the (max,+) semiring. On the other
hand it matches exactly the ad hoc proposal of [VA07a], where the function
is denoted Φ(t) .= cl − oc(t).

For a confidence level of 90%, the precision of the intervals obtained for
the time budgets reported are presented in Figure 4.8. These values are the
average of the outcomes from four independent experiments run in Mendieta.

Unsurprisingly, standard Monte Carlo simulations yielded the best interval
estimates for the lowest redundancy, R = 2, coinciding partially with the
results reported in [BDM17]. Notice however that for R = 3 and although
to a moderate extent, Figure 4.8 shows a better behaviour of all RESTART
simulations w.r.t. nosplit, unlike in [BDM17].

Even though these outcomes can be belittled as yet another example where
the event is not rare enough for a really effective application of multilevel
splitting (which might well be true!), some insight can be gained from a
deeper analysis of the situation.

To become non operational the database requires R components in any
unit to fail, where the number of components per unit is heterogeneous. The
unit with most components would be the most likely to produce the system
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Figure 4.8: Intervals precision for the steady-state analysis of the database

failure, which is the case of the disks clusters. Nevertheless, the lifetime
among components differs greatly, and on average it is three times shorter in
controllers and processors than in disks. This means that it is actually very
likely to observe a non operational database due to R failed controllers or
processors from the same unit, i.e. of the same type.

That is why one needs to increase the redundancy value in order to obtain
some gain from the use of multilevel splitting. Even in the rich layering
offered by ac1 to ac4, most cases of a non operational database will be caused
by R failed processors or controllers of the same type. Which does not imply,
however, that the compositional approach is at a loss. It merely justifies why
nosplit performed better than the splitting simulations for R = 2. Higher
redundancies mean a more layered structure of even the most likely, flattest
failures, which goes in favour of using multilevel splitting.

We now draw attention to redundancy values R ∈ {4, 5}, where standard
Monte Carlo ceases to be a reasonable choice and one has to resort to
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other strategies, e.g. importance splitting. Moreover, since the monolithic
approach was infeasible already for R = 4 in our studies from Section 3.6, the
compositional approach introduced in this chapter offers the only automatic
alternative to apply multilevel splitting.

Remarkably, none of the five composition strategies clearly outperformed
the rest in all configurations. This would suggest that, in this scenario where
flat failures caused by R processors or controllers have great likelihood, the
extra importance layering granted by functions like ac4 is not a defining
factor. The charts also hint at a better performance of RESTART for the
higher splitting values, although convergence was slightly faster in almost all
cases for splitting 10 than for splitting 15.

A few configurations yielded values amiss the rest; the most striking
cases from Figure 4.8 are observed when R = 5 for splitting 2 (ac4 and ah)
and splitting 5 (ah). Furthermore, for that redundancy and in one out of
the four independent experiments run, ac4 and ac1 failed to converge to an
estimate for splittings 10 and 15 respectively. These peculiarities are, to our
surprise, not related to the splittings-thresholds fiasco. The technical output
of FIG revealed an aberration in the outcome of the individual simulations,
which at some point started to sample the rare event at extremely high (or
low) rates, contrarily to the immediately preceding behaviour. Suspecting a
relation between these aberrations and the pseudo-random number genera-
tion algorithm, we repeated such runs using a different algorithm fed with
different seeds. As expected, the aberrations were not observed again, and
the outcomes fitted the normal setting corresponding to each case.

As last remark we highlight that in spite of the similar performance among
all importance functions, both ac4 and ah (the last regarded as the (max,+)
semiring) are not specifically designed for the database, but can be derived
from the DNF expression of the rare event as described in Section 4.3.3. That
is one good reason to prefer them above the other three.

4.6.6 Oil pipeline

Consider a consecutive-k-out-of-n: F system, usually denoted C(k, n : F). This
consists of a sequence of n components ordered sequentially, so that the whole
system fails if k or more consecutive components are in a failed state. For
a more down-to-earth mental picture consider an oil pipeline where there
are n equally spaced pressure pumps. Each pump can transport oil as far
as the distance of k pumps and no further. Thus if k > 1 then the system
has certain resilience to failure, and remains operational as long as no k
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consecutive pumps have failed, otherwise regardless of how many pumps have
failed.

C(k, n : F) systems have been studied as early as 1980 [Kon80]. Several
generalisations exist to the original setting; we are interested in the non-
Markovian and repairable systems analysed in e.g. [XLL07,VA10]. Those works
assume the existence of a repairman which can take one failed component at
a time and leave it “as good as new,” after a log-normal distributed repair
time has elapsed [XLL07]. In particular [VA10] consider also the existence
of non-Markovian failure times (namely, sampled from the Rayleigh—or
Weibull—distribution) and measure the steady-state unavailability of the
system. Notice the probability density function used in [VA10] for the Rayleigh
distribution is fβ(t) .= βte−t

2 β
2 , whose mean is

√
π
2β .

To run the experiments in Mendieta we use IOSA models like the one
shown in Appendix A.11, which represents an oil pipeline of the type
C(3, 20: F), i.e. where there is a total of n = 20 pressure pumps, and k = 3
consecutive failed pumps cause a general system failure. In that example the
steady-state system unavailability is given by the property query:

S ( ( broken1>0 & broken2>0 & broken3>0 ) |
( broken2>0 & broken3>0 & broken4>0 ) |

...
( broken18>0 & broken19>0 & broken20>0 ) ) .

Unfortunately the (k − 1)-step Markov dependency of the sources (see
[LZ00] and also [XLL07,VA10]) cannot be modelled in IOSA, since it would
require to associate more than one distribution to the clocks involved†. We
also highlight that in order to model the repairman, an extension of the
basic IOSA theory and model syntax presented in Sections 4.4 and 4.5.2 was
employed, which allows certain use of instantaneous (or untimed) actions§.
That, plus the possibility to define and operate with arrays of variables, is
currently supported by the FIG tool version 1.1.

Still, there is no support in FIG for the repair policies reported in [VA10]—
we point out that the tool is designed to fit a general basis of models, and
such repair policy is quite singular to this system. This issue, plus the absence
of the (k− 1)-step Markov dependence hypothesis, make our implementation

† Several extensions to the formalism are under consideration; this is one of them.
§ This is ongoing research by Monti et al. at the Dependable Systems Group.

http://dsg.famaf.unc.edu.ar
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of the models incomparable to those studied in [XLL07,VA10]. Therefore we
resort to the same strategy followed with the database, and for each system
configuration studied we report the mean value of all probabilities estimated,
as well as their standard deviation.

Specifically, we studied models with n ∈ {20, 40, 60} sequentially ordered
components, where k ∈ {3, 4, 5} sequential failures result in a non operational
system. As in [VA10] we analysed both exponential and Rayleigh failure times,
for rate and scale parameters λ = 0.001 and β = 0.00000157 respectively.
This yields the same mean lifetime in the components. Repair time is sampled
from a log-normal distribution with parameters µ = 1.21 and σ = 0.8. The
steady-state system unavailability estimated for these configurations is shown
in Table 4.2.

Exponential Rayleigh

n : 20 40 60 20 40 60

k
=

3 avg{γ̂i} : 1.53e-5 4.65e-5 1.10e-4 2.02e-5 6.54e-5 1.63e-4
stdev{γ̂i} : 1.76e-6 4.68e-6 1.62e-5 2.49e-6 7.27e-6 2.21e-5

k
=

4 avg{γ̂i} : 2.92e-7 1.49e-6 4.33e-6 5.44e-7 2.65e-6 8.16e-6
stdev{γ̂i} : 1.39e-7 2.51e-7 6.64e-7 1.57e-7 4.04e-7 1.06e-6

k
=

5 avg{γ̂i} : 2.62e-9 5.93e-8 3.06e-7 7.49e-9 1.26e-7 6.97e-7
stdev{γ̂i} : 2.03e-9 2.54e-8 1.39e-7 6.11e-9 4.49e-8 2.77e-7

Table 4.2: Unavailability estimates for the oil pipeline

We performed two independent experiments, each covering all eighteen
configurations, running FIG in Mendieta and requesting a 90 |40 CI. We
imposed differentiated wall time execution limits for the different values of k,
since this parameter has the highest influence in the rarity of the event (see
Table 4.2) and thus in the convergence times. For k = 3, 4, 5 we requested
estimations to converge within 1.5, 3, and 6 hours respectively.

The situation with the oil pipeline models is similar to the database, in
the sense that the high amount of components (which fail independently from
each other) render any monolithic approach utterly infeasible. Therefore the
automatic importance functions tested with RESTART are compositional.

The naïve strategy of composing the local functions with summation
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as composition operand is denoted ac1. Similarly, ac2 uses product as
composition operand and an exponentiation post-processing. The (max,+)
and (+, ∗) semiring and ring composition strategies are employed by the
functions denoted ac3 and ac4 respectively. Last, ah uses the ad hoc interface
of FIG to implement the (max,+) semiring, using the variables of the modules
(i.e. in an ad hoc fashion) rather than the local importance functions which
the tool could compute if requested. This is the approach followed in [VA10]
and denoted Φ(t) .= cl − oc(t) in that work.

This case study features eighteen different configurations, each of them
tested with standard Monte Carlo and with RESTART using five different
importance functions. In addition, each multilevel splitting run was tested
for the usual four different global splitting values. The average times to
convergence in seconds are presented in Tables 4.4 and 4.5.

Sometimes only one out of the two experiments run for each setting pro-
duced a result; such single-simulation results appear enclosed in parentheses
in Tables 4.4 and 4.5. Since no simulation converged within the six hours
time bound for K = 5, in that cases we show the interval precision achieved
at timeout for a 90% confidence interval. Also and as before we divide the
charts per splitting value.

Since there are so many different configurations (eighteen in total), and
also so many different settings tested for each configuration (a standard
Monte Carlo run plus twenty RESTART runs if we tell apart by splitting and
importance function), some simplifications are due to interpret these results.
Table 4.3 present a very coarse filter, where we count the total number of
RESTART simulations outperforming the standard Monte Carlo runs on each
configuration.

Exponential Rayleigh

n : 20 40 60 20 40 60

k = 3 9 8 0 3 3 0
k = 4 19 16 4 20 16 2
k = 5 7 15 6 10 10 4

Table 4.3: RESTART vs. Monte Carlo

We highlight that in Table 4.3, any splitting setting for which a single
experiment (out of the two) converged, was considered to have lost against
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Split 2 Split 5
n k ac1 ac2 ac3 ac4 ah ac1 ac2 ac3 ac4 ah

20
3 58 51 99 62 804 75 52 53 50 54
4 2780 2109 4398 2339 7257 6292 3535 4134 2683 3026
5 (7.0e-10) - 2.4e-9 (3.9e-9) (1.7e-9) 5.6e-9 4.4e-9 (1.6e-9) 2.2e-9 2.9e-9

40
3 105 1386 1388 153 132 111 1833 123 107 200
4 3439 3480 3590 10800 3902 4047 6344 5120 10800 3368
5 5.8e-8 5.6e-8 4.5e-8 5.6e-8 3.8e-8 7.4e-8 5.1e-8 4.9e-8 2.1e-8 4.7e-8

60
3 148 156 240 1953 256 274 383 404 202 438
4 10800 10800 4879 4023 4932 10800 10800 10246 4104 10800
5 2.1e-7 1.8e-7 2.8e-7 1.7e-7 2.4e-7 3.8e-7 5.1e-7 5.3e-7 3.6e-7 3.2e-7

Split 10 Split 15
n k ac1 ac2 ac3 ac4 ah ac1 ac2 ac3 ac4 ah nosplit

20
3 77 53 77 44 81 88 131 74 73 80 63
4 10800 4019 5095 3347 4922 5084 8445 6205 4336 3452 10800
5 3.7e-9 2.1e-9 5.8e-9 2.6e-9 3.3e-9 (5.1e-10) 3.4e-9 7.0e-9 (1.7e-9) 5.1e-9 3.7e-9

40
3 89 1456 221 66 137 92 1811 147 121 155 142
4 3868 3568 4072 10800 5973 4449 4332 4182 10800 5152 10800
5 5.9e-8 4.4e-8 5.3e-8 5.3e-8 5.9e-8 3.9e-8 7.1e-8 1.3e-7 8.4e-8 9.5e-8 6.2e-8

60
3 263 240 649 225 765 286 245 214 240 180 137
4 10800 10800 2799 5430 3502 10800 10800 5277 6135 5838 4332
5 2.5e-7 1.5e-7 1.2e-7 2.3e-7 3.6e-7 2.8e-7 1.7e-7 2.4e-7 5.0e-7 2.9e-7 2.3e-7

Table 4.4: Results for the oil pipeline with exponential failures
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Split 2 Split 5

n k ac1 ac2 ac3 ac4 ah ac1 ac2 ac3 ac4 ah

20
3 50 60 57 63 644 34 51 55 48 52
4 2884 2959 6625 2342 3775 4513 1673 2634 1598 1785
5 (1.5e-9) 5.0e-9 - (4.0e-9) (2.4e-9) 4.0e-9 (5.3e-9) 5.6e-9 (4.0e-9) 6.9e-9

40
3 71 1504 139 123 193 119 1579 120 141 101
4 5140 3881 3326 10800 2000 2539 3720 2973 10800 5467
5 9.8e-8 1.4e-7 1.1e-7 9.3e-8 7.6e-8 8.6e-8 1.2e-7 1.4e-7 9.4e-8 8.2e-8

60
3 256 222 185 2296 163 316 283 319 345 368
4 10800 10800 3218 3801 4528 10800 10800 7697 6488 5634
5 6.2e-7 3.2e-7 4.4e-7 2.9e-7 4.5e-7 4.6e-7 3.0e-7 4.5e-7 1.4e-6 4.8e-7

Split 10 Split 15
n k ac1 ac2 ac3 ac4 ah ac1 ac2 ac3 ac4 ah nosplit

20
3 51 53 61 53 61 76 83 74 46 76 49
4 2322 2172 1687 1645 3420 2584 3418 2740 3241 3008 10800
5 - 1.3e-8 1.2e-8 (4.2e-9) 7.4e-9 (2.6e-9) 2.1e-8 1.7e-8 (4.5e-9) 7.8e-9 (2.3e-9)

40
3 92 1588 119 83 161 141 1893 123 106 111 101
4 3143 3384 3558 10800 2613 3674 4510 3911 10800 4424 10800
5 9.6e-8 1.0e-7 6.9e-8 9.1e-8 7.6e-8 1.5e-7 1.3e-7 1.4e-7 6.3e-8 9.4e-8 9.5e-8

60
3 433 239 450 254 609 387 528 1192 430 964 100
4 10800 10800 10800 6726 9515 10800 10800 10800 7837 10800 3769
5 9.7e-7 5.2e-7 3.2e-7 5.5e-7 1.8e-6 1.2e-6 7.7e-7 5.7e-7 8.7e-7 1.0e-6 3.7e-7

Table 4.5: Results for the oil pipeline with Rayleigh failures
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standard Monte Carlo. This might be regarded as biased against multilevel
splitting, but the only properly unbiased way of comparing all simulation
settings would be to perform several more repetitions of the full experiment.
Unfortunately, the long execution time of a full experiment† leaves this out
of the question.

The above notwithstanding, in the case of systems with Rayleigh failure
times we observe that using multilevel splitting pays off when the probability
of the rare event lies below approximately 5.0e-6, i.e. for n ∈ {20, 40} when
k = 4, and for all n when k = 5 (the cases when n = 60 are addressed next
in more detail). Something quite similar happened with the exponentially
distributed failure times, but for a lower magnitude, namely around 2.0e-6.

It is also noteworthy that the general trend of Table 4.3 indicates higher
values of n are detrimental to multilevel splitting w.r.t. standard Monte Carlo.
This could be due to the fact that, in our models, the higher the value of n
the lower the rarity of the event.

Even though that could indeed explain a smooth variant of such overall
behaviour regarding n, there seems to be a harder barrier between the values
40 and 60 of n than between the values 20 and 40. In that sense notice that
the outcomes in Tables 4.4 and 4.5 show several RESTART runs reached the
maximum corresponding time bound—timed-out—thus failing to outperform
the competing nosplit runs. The higher the value of n the more frequent
this is observed; see e.g. the cases when n = 60 and k = 4.

If we take into consideration the splittings-thresholds fiasco, then we
find a plausible explanation for this behaviour, where systems with n = 60
components are hard to analyse for FIG using RESTART. Namely, a higher n
implies longer simulation steps since more clocks need to be updated per step.
If the thresholds for multilevel splitting are selected poorly, the wasted time
increases with the splitting. This should be exacerbated by having higher
splitting values, although not necessarily in a linear way, since the quality of
the selected thresholds plays a major role.

In the spirit of the above, for the configuration n = 60 and k = 4, for
splitting values 2, 5, 10, and 15 respectively, Tables 4.4 and 4.5 show that out
of the five RESTART settings: respectively 2, 2, 3, and 4 settings timed-out
for Rayleigh distributed failure times; and respectively 2, 3, 2, and 2 settings
timed-out for exponentially distributed failure times.

In any case we observe from Table 4.3 that the only configurations
where, for any splitting, none or very few RESTART runs outperformed the

† It takes 6 days to test the 18 configurations with all simulation settings.



4.6.6 Oil pipeline 183

1e-10

1e-09

1e-08

1e-07

No spli�ng Split 2 Split 5 Split 10 Split 15

nosplit
ac1
ac2
ac3
ac4
ah

Figure 4.9: Exponential-failures oil pipeline; intervals precision for 3 h timeout

nosplit runs, are those where the event is less rare. This covers mostly
the configurations where k = 3. Higher values of k allow a more fruitful
layering of the state space and hence a more efficient application of multilevel
splitting. This coincides with the analysis and results presented in [VA10],
where RESTART with the importance function ah was employed.

Tables 4.4 and 4.5 show that the only runs where, for some execution
settings, one or both experiments failed to produce a result, are precisely
those where the event is most rare, viz. n = 20 and k = 5 for both failure
distributions. This does not only difficult a proper analysis, but also interferes
with our attempts to corroborate the previous conjectures regarding the
behaviour of multilevel splitting for higher values of k.

Hence, to allow a more robust and detailed analysis we replicated the
experiments for the configuration n = 20 and k = 5 of the oil pipeline,
for both exponential and Rayleigh failure times in the nodes. We let the
simulations run for 3 h (wall time), using the precision of the intervals
achieved as performance measure. Three independent experiments were run
in Mendieta in this fashion; the results are presented in Figures 4.9 and 4.10.
These values are the average of the precision of the intervals obtained from
the three experiments run; the standard deviation is shown as whiskers on
top of the bars.

To our surprise, even in these two configuration where the event is
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Figure 4.10: Rayleigh-failures oil pipeline; intervals precision for 3 h timeout

relatively rare, several splitting simulations were defeated by standard Monte
Carlo. There are a few situations where particular RESTART settings clearly
outperformed nosplit: e.g. in Figure 4.9 there is ac2 for splitting 15; in
Figure 4.10 there are ac2 and ac4 for splitting 2, ac3 for splitting 5, and ac4
and ah for splitting 15. However we would have expected a worse performance
of nosplit w.r.t. the splitting variants.

Comparing these experiments for the different failure time distributions,
we observe that the simulations which use splitting behaved worse (on average)
for the exponentially distributed failures. Notice also how the standard
deviation of most RESTART settings in Figures 4.9 and 4.10 is higher than
that of standard Monte Carlo, and notice that such behaviour is more
pronounced in the exponential (rather than the Rayleigh) variant. This
last observation suggests a higher sensitivity to the seeding of the RNG by
RESTART than by standard Monte Carlo, which would also be closely related
to the splittings-thresholds fiasco. This also indicates that several simulations
using splitting actually outperformed the ones employing nosplit, although
the average behaviour appears to favour the latter, contrary to our initial
expectations.

In a final attempt to better understand the behaviour of this oil pipeline
model, we repeated the experiments for a higher wall time limit, namely 5 h.
The hypothesis is that a longer execution could stabilise the behaviour of the
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Figure 4.11: Exponential-failures oil pipeline; intervals precision for 5 h timeout

simulations in the long run. This should favour RESTART simulations over
standard Monte Carlo, since a proper splitting should generate oversampling
in an area rich in rare events, contrary to the single simulation approach of
the nosplit setting.

The results of these last experiments, also run in Mendieta, are presented
in Figures 4.11 and 4.12. Four instances were launched for each configuration
and execution setting. All four succeeded in each case for the experiments
with exponentially distributed failures in the nodes. However, in the Rayleigh
cases and due to unavoidable issues with the hardware, only two or three
runs for each case finished without external interruptions. The outcomes of
the interrupted runs were discarded, and thus the samples used to compute
the averages shown in Figure 4.12 consist in less than four values. That is
why we consider the results from those experiments of lower quality than the
ones presented in Figure 4.11.

On the one hand our conjectures regarding a better performance of
RESTART were fulfilled in the exponential variant of the model, where most
settings using splitting behaved (on average) better than standard Monte
Carlo. We highlight results like ac2 for splitting 2, ac1 for splitting 5, and ac4
for splittings 5 and 10, where the average interval width plus the standard
deviation from measurements is still below the precision achieved by the
nosplit simulations.
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Figure 4.12: Rayleigh-failures oil pipeline; intervals precision for 5 h timeout

On the other hand the results for the oil pipeline with Rayleigh failure
times are slightly disconcerting, because they show a tendency contrary
to that of the exponential case, which we could predict successfully. That
is, Figure 4.12 shows that simulations using splitting behaved worse than
standard Monte Carlo in general, which is also at odds with the results
previously presented in Figure 4.10 for the 3 h timeout.

Nonetheless, the matter can be settled by considering the following:

• the execution of the experiments was troublesome from the technical
viewpoint, yielding smaller samples to compute the averages from;

• since there is evidence of a high sensitivity to the specific seed fed to
the RNG, Figure 4.12 should be interpreted with care if we consider the
previous item;

• as a matter of fact and in a more general sense, samples with more
than—say—30 experimental runs should be used to reduce the standard
deviation to reasonably small values;

• on top of all this we have the splittings-thresholds fiasco, revealed in
the high variability observed for the different global splittings values,
which complicates the comparison of any particular RESTART execution
setting against standard Monte Carlo.
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All this talks in favour of repeating the whole experimentation, running
many more independent experiments per system configuration and execution
setting, and maybe using longer execution times. However higher values of
k should be studied first, since k = 5 may be simply not enough to observe
a clear advantage of RESTART w.r.t. standard Monte Carlo. In particular
[VA10] study the oil pipeline system for k ∈ {4, 6}, and report higher gains
for the higher value of k. This will be the subject of future research.

To conclude this section, some comparisons are due among the different
importance functions used in the RESTART runs. Neither Tables 4.3 to 4.5
nor Figures 4.9 to 4.12 suggest a clearly outstanding composition strategy
outperforming the rest. Indeed, the fastest converging function varied much
not only with the global splitting chosen, but also with the particular system
configuration studied.

Still, the rich set of results presented along the section allows us to distill
some useful information. Tables 4.4 and 4.5 show that ac4 was either the best
performing function or the runner up in most configurations where n = 60.
Notice that in some settings it even outperformed the standard Monte Carlo
approach, although the higher values of n favour the nosplit strategy as
discussed. We suspect this is closely related to the large importance range
offered by this function, higher than ac1 and ac3 for instance. Besides, since
the function is derived from the specific property under study, ac4 may fit
the evolution of a simulation towards the rare event in a more natural way
than e.g. functions ac1 and ac2.

Moreover, ac4 was among the most resilient to the change in splitting
value, as it can be observed in Figures 4.9 to 4.12. In contrast we remark
that ac2, which yielded quite good results for e.g. splitting 15 in Figure 4.9
and splitting 2 in Figure 4.11, showed a high variability related to the global
splitting chosen. The simple summation implemented by ac1 behaved better
than expected, but was always outperformed by the functions implementing
the ring/semiring composition strategies in most configurations—see for
instance Tables 4.3 to 4.5.

The above indicates an overall very good behaviour of ac4, which in
addition was never last in the ranking of importance functions for the most
demanding configurations, i.e. the ones presented in Figures 4.9 to 4.12. We
believe a more thorough study of the oil pipeline system, specifically testing
higher values of k and other splitting values, would maintain this assertion
and favour majorly ac4, whose good properties may be a result of the manner
in which it is derived.
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It seems clear there is much still to be learnt from this system. It is an
interesting case study per se, due to its many applications in industry, but it
also presents high potential for the application of importance splitting. In
this our first approach we have seen that rarer regimes, where the system is
more tolerant to failures due to high values of the parameter k, are beneficial
to our techniques. Verifying the extent to which this holds with a more
efficient version of our tool (which in particular has addressed the thresholds
selection issue), is a challenge we intend to face in the near future.



Final remarks 5
In this thesis we have developed techniques to perform automated system
model analysis by simulation in rare event regimes. We employ importance
splitting (I-SPLIT) to steer the simulation of execution paths towards the rare
event. We contributed with algorithms to derive the importance function
on which I-SPLIT heavily relies. This way, the user input needed to run
importance splitting does not differ from the usual input required by analyses
which use standard Monte Carlo simulation, plus a global splitting value.

We divided our approach in two installments. Chapter 3 presents a first
monolithic approach to build and store the importance function. The high
quality of the resulting function was empirically verified in several case studies,
but its requirement to expand the state space of the fully composed model is
a major setback. Chapter 4 presents a second compositional approach which
drops such requirement, at the expense of losing some insight into the global
system semantics. However, choosing an adequate composition strategy
guided by the rare event property can counter this sometimes. Furthermore,
the composition strategy grants high flexibility to build a (global) importance
function, with more potential than the monolithic approach.

Importance splitting is a complex technique. It requires articulating
several decisions, e.g. the thresholds and the splitting for RESTART, in
order to obtain some gain w.r.t. standard Monte Carlo. Besides developing
an algorithmic basis, in this thesis we devise mechanisms to embed these
algorithms in an automated application of I-SPLIT. The result, as desired,
resembles the push-button approach from standard model checking.

Moreover we developed software tools (BLUEMOON and FIG) implementing
our theory. This allowed us to validate our claims, running experiments on
case studies taken from the RES literature. We compared the performance of
standard Monte Carlo simulations against our automatic approach to I-SPLIT,
showing the gain achieved by our proposal in rare event regimes. We also
compared the performance of automatically built importance functions against
functions chosen ad hoc for each model studied. The resulting outcomes
witness that our proposal is quite versatile besides being automatic.
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5.1 Future work

First and foremost, it is clear from the results and discussions presented in
Sections 3.5 and 4.6 that our approach to select the importance thresholds
for RESTART is far from optimal. We now suspect that the continuous-
space hypothesis of both Adaptive Multilevel Splitting and Sequential Monte
Carlo weights too heavily on the performance of these procedures. Adapting
them to the discrete state space setting of Markov chains or IOSA yielded
unsatisfactory results.

That is highly related to our strategy of choosing a global splitting value.
This may yield optimal results in a continuous setting where thresholds can
be chosen as close together as desired. However, in our experiments, having
a single splitting value sometimes led to starvation, and sometimes to an
overhead of offspring simulations, in spite of our efforts to counter this via
the selection of the thresholds.

Late discussions with José Villén-Altamirano and Pedro R. D’Argenio
have led us to believe that the global splitting strategy must be dropped, in
order to obtain a (near-)optimal choice of thresholds. Instead one should
select both the threshold and the splitting to perform upon reaching it, in an
iterative procedure which evolves from the initial system state towards the
rare event. An outline of an algorithm goes as follows†:

0. Initially regard every importance value of the current function as a
potential threshold;

1. Launch n pilot RESTART simulations with global splitting 2;

2. Force an early termination if necessary, given one should spend less
than 10% of the total computing budget in these preliminary decisions;

3. Approximate the probabilities {Pi|0} from [VAVA06] with the quotient
between: the number of simulations that reached the i-th importance
value, and 2i n;

4. Approximate the probabilities Pi+1|1 = Pi+1|0P1|0 with the approxima-
tions of the previous item;

† José Villén-Altamirano proposed the original idea for steady-state analysis, later revised
and updated in discussions with Arnd Hartmanns.
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5. Using those values, compute the accumulated splitting coefficients {ri}
from [VAVA06] using the equation ri = (Pi|0Pi+1|1)− 1/2 ∈ Q also from
that work;

6. Iteratively compute the (integral) splitting values {Ri} for each potential
threshold by means of the formula

Ri = round
(

ri∏i−1
j=1Ri

)
;

7. If Ri 6 1 then the i-th importance value is not a threshold;

8. Else it is, and simulations reaching it should spawn Ri ∈ N offsprings.

Many other potential improvements on the results from this thesis reside
on the algorithms which derive the importance function. Their proven
effectivity notwithstanding, myriads of variations can be tested, perhaps on
extended versions of IOSA, or also on different modelling formalisms.

The first change that might come into mind is considering the probabilistic
weights of transitions in an adaptation of Algorithm 1. Notice this cannot
always be performed, e.g. Markov chains are generally represented with
abstract data types that would allow it, but the stochastic component of
IOSA (as presented here) lies further from reach, “hidden in the clocks.”

Another extension to our compositional approach in particular, is devel-
oping other automatic ways to compose the local importance functions. We
found that a DNF expression of the rare event is both natural and useful
to derive a composition strategy. However, more complex yet structured
ways to express the property query could be considered, maintaining the
capacity to distill a composition strategy from them. In that sense we are
currently drawing our attention towards the theory of repairable Dynamic
Fault Trees—see [RS15] and references therein.

In a more distant appreciation, this thesis builds the importance function
mostly based on the structure of the model. The rare event property is a key
component as well, and even more so for the compositional approach, but
the distance between values upon which the importance function is based is
imprinted by the adjacency graph of the system model. A different approach
would be to reverse this strategy, starting to build the function from the
property expression and modifying it as one traverses the model, as Sedwards
et al. do in [JLS13, JLST15]. In this direction we believe that the counting
fluents of [RDDA15] could provide a richer framework.
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Last but not least, one of the main motivations of this thesis is the
development of software tools to offer off-the-shelf implementations of our
proposals. In that respect BLUEMOON was devised mostly as a prototype to
test the validity of our strategies, whereas the design and implementation of
FIG are planned on a vaster scale.

It would be very interesting to see further development of the FIG tool.
On the one hand there are several efficiency boosts close at hand, like a trivial
parallelization of the interval update mechanisms, which could improve the
performance of estimations at very low coding effort. On the other hand there
are deeper issues, stemming from the algorithmic choices of the tool, which
also affect the general performance. The thresholds selection mechanism
and the deterministic truncation of unpromising paths are examples of these.
Studying the effect of a change in such algorithms sounds promising, mostly
the one used to choose the thresholds as earlier mentioned.

Furthermore, FIG currently implements a single importance splitting
algorithm. Even though this algorithm (RESTART) was chosen due to its
fine general properties, there are no singular bounds between the tool and
RESTART. Recall that the importance function can be used as a black box
by most importance splitting strategies. That, plus the modular design of
FIG, should make the addition of further simulation engines (like Fixed Effort,
see Section 2.5.2) quite a straightforward task.



Appendix:

System models A
This appendix presents the source code of all the models used to produce
the results included in this thesis. Two modelling formalisms are used: all
systems studied in Chapter 3 are modelled in the PRISM input language; the
ones studied in Chapter 4 are written using the IOSA model syntax instead.

A.1 Tandem queue

PRISM model of a continuous time tandem queue, used to produce the results
presented in Section 3.5.2.

1 ctmc
2
3 const int c; // Queues capacity
4 const double lambda = 3; // rate(-> q1 )
5 const double mu1 = 2; // rate( q1 -> q2 )
6 const double mu2 = 6; // rate( q2 ->)
7 // Values taken from Marnix Garvels’ Ph.D. Thesis:
8 // The splitting method in rare event simulation, p. 85.
9

10 module ContinuousTandemQueue
11
12 q1: [0..c-1] init 0;
13 q2: [0..c-1] init 1;
14 arr: [0..2] init 0; // Arrival: (0:none) (1:lost) (2:successful)
15 lost: [0..1] init 0; // Package loss in q2: (0:none) (1:lost)
16
17 // Package arrival at first queue
18 [] q1<c-1 -> lambda: (arr’=2) & (lost’=0) & (q1’=q1+1);
19 [] q1=c-1 -> lambda: (arr’=1) & (lost’=0);
20
21 // Passing from first to second queue
22 [] q1>0 & q2<c-1 -> mu1: (arr’=0) & (lost’=0) & (q1’=q1-1) & (q2’=q2+1);

23 [] q1>0 & q2=c-1 -> mu1: (arr’=0) & (lost’=1) & (q1’=q1-1);
24
25 // Package departure from second queue
26 [] q2>0 -> mu2: (arr’=0) & (lost’=0) & (q2’=q2-1);
27
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28 endmodule
29
30 label "goal" = lost=1;
31 label "stop" = q2=0;
32 label "running" = q2!=0;
33 label "reference" = true;

A.2 Discrete time tandem queue

PRISM model of a discrete time tandem queue, used to produce the results
presented in Section 3.5.3.

1 dtmc
2
3 const int c; // Queues capacity
4 const double parr = 0.1; // Prob(-> q1 )
5 const double ps1 = 0.14; // Prob( q1 -> q2 )
6 const double ps2 = 0.19; // Prob( q2 ->)
7
8 module DiscreteTandemQueue
9

10 q1: [0..c] init 0;
11 q2: [0..c] init 0;
12 arr1: [0..2] init 0; // Arrival: (0:none) (1:lost) (2:successful)
13 lost2: [0..1] init 0; // Package loss in q2: (0:none) (1:lost)
14
15 [] (q1=0) & (q2=0)
16 -> (parr): (q1’=q1+1) & (arr1’=2) & (lost2’=0)
17 + (1-parr): (arr1’=0) & (lost2’=0);
18
19 [] (0<q1 & q1<c) & (q2=0)
20 -> (parr*ps1): (q2’=q2+1) & (arr1’=2) & (lost2’=0)
21 + (parr*(1-ps1)): (q1’=q1+1) & (arr1’=2) & (lost2’=0)
22 + (ps1*(1-parr)): (q1’=q1-1) & (q2’=q2+1) & (arr1’=0) & (lost2’=0)

23 + ((1-parr)*(1-ps1)): (arr1’=0) & (lost2’=0);
24
25 [] (q1=c) & (q2=0)
26 -> (parr*ps1): (q2’=q2+1) & (arr1’=2) & (lost2’=0)
27 + (parr*(1-ps1)): (arr1’=1) & (lost2’=0)
28 + ((1-parr)*ps1): (q1’=q1-1) & (q2’=q2+1) & (arr1’=0) & (lost2’=0)

29 + ((1-parr)*(1-ps1)): (arr1’=0) & (lost2’=0);
30
31 [] (q1=0) & (0<q2)
32 -> (parr*ps2): (q1’=q1+1) & (q2’=q2-1) & (arr1’=2) & (lost2’=0)
33 + (parr*(1-ps2)): (q1’=q1+1) & (arr1’=2) & (lost2’=0)
34 + ((1-parr)*ps2): (q2’=q2-1) & (arr1’=0) & (lost2’=0)
35 + ((1-parr)*(1-ps2)): (arr1’=0) & (lost2’=0);
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36
37 [] (0<q1 & q1<c) & (0<q2 & q2<c)
38 -> (parr*ps1*ps2): (arr1’=2) & (lost2’=0)
39 + (parr*ps1*(1-ps2)): (q2’=q2+1) & (arr1’=2) & (lost2’=0)
40 + (parr*(1-ps1)*ps2): (q1’=q1+1) & (q2’=q2-1) & (arr1’=2)
41 & (lost2’=0)
42 + (parr*(1-ps1)*(1-ps2)): (q1’=q1+1) & (arr1’=2) & (lost2’=0)
43 + ((1-parr)*ps1*ps2): (q1’=q1-1) & (arr1’=0) & (lost2’=0)
44 + ((1-parr)*ps1*(1-ps2)): (q1’=q1-1) & (q2’=q2+1) & (arr1’=0)
45 & (lost2’=0)
46 + ((1-parr)*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=0) & (lost2’=0)
47 + ((1-parr)*(1-ps1)*(1-ps2)): (arr1’=0) & (lost2’=0);
48
49 [] (q1=c) & (0<q2 & q2<c)
50 -> (parr*ps1*ps2): (arr1’=2) & (lost2’=0)
51 + (parr*ps1*(1-ps2)): (q2’=q2+1) & (arr1’=2) & (lost2’=0)
52 + (parr*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=1) & (lost2’=0)
53 + (parr*(1-ps1)*(1-ps2)): (arr1’=1) & (lost2’=0)
54 + ((1-parr)*ps1*ps2): (q1’=q1-1) & (arr1’=0) & (lost2’=0)
55 + ((1-parr)*ps1*(1-ps2)): (q1’=q1-1) & (q2’=q2+1) & (arr1’=0)
56 & (lost2’=0)
57 + ((1-parr)*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=0) & (lost2’=0)
58 + ((1-parr)*(1-ps1)*(1-ps2)): (arr1’=0) & (lost2’=0);
59
60 [] (0<q1 & q1<c) & (q2=c)
61 -> (parr*ps1*ps2): (arr1’=2) & (lost2’=0)
62 + (parr*ps1*(1-ps2)): (arr1’=2) & (lost2’=1)
63 + (parr*(1-ps1)*ps2): (q1’=q1+1) & (q2’=q2-1) & (arr1’=2)
64 & (lost2’=0)
65 + (parr*(1-ps1)*(1-ps2)): (q1’=q1+1) & (arr1’=2) & (lost2’=0)
66 + ((1-parr)*ps1*ps2): (q1’=q1-1) & (arr1’=0) & (lost2’=0)
67 + ((1-parr)*ps1*(1-ps2)): (q1’=q1-1) & (arr1’=0) & (lost2’=1)
68 + ((1-parr)*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=0) & (lost2’=0)
69 + ((1-parr)*(1-ps1)*(1-ps2)): (arr1’=0) & (lost2’=0);
70
71 [] (q1=c) & (q2=c)
72 -> (parr*ps1*ps2): (arr1’=2) & (lost2’=0)
73 + (parr*ps1*(1-ps2)): (arr1’=2) & (lost2’=1)
74 + (parr*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=1) & (lost2’=0)
75 + (parr*(1-ps1)*(1-ps2)): (arr1’=1) & (lost2’=0)
76 + ((1-parr)*ps1*ps2): (q1’=q1-1) & (arr1’=0) & (lost2’=0)
77 + ((1-parr)*ps1*(1-ps2)): (q1’=q1-1) & (arr1’=0) & (lost2’=1)
78 + ((1-parr)*(1-ps1)*ps2): (q2’=q2-1) & (arr1’=0) & (lost2’=0)
79 + ((1-parr)*(1-ps1)*(1-ps2)): (arr1’=0) & (lost2’=0);
80 endmodule
81
82 label "goal" = lost2=1;
83 label "reference" = true; // arr1!=0;
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A.3 Mixed open/closed queue

PRISM model of a mixed open/closed queue, used to produce the results
presented in Section 3.5.4.

1 ctmc
2
3 const int b; // Open queue (oq) capacity
4 const int N2 = 1; // Closed system (cq+cqq) fixed size
5 const double l = 1; // oq arrival rate
6 const double m11 = 4; // oq Server1 rate
7 const double m12 = 2; // cq Server1 rate
8 const double m2; // cq Server2 rate
9 // Values taken from Glasserman, Heidelberger, Shahabuddin, and Zajic:

10 // Multilevel Splitting For Estimating Rare Event Probabilities,
11 // Operations Research, Vol. 47, No. 4, July-August 1999, pp. 585-600
12
13 // System queues
14 global oq: [0..b] init 0; // Open queue
15 global cq: [0..N2] init 0; // Closed queue
16
17 module Arrival
18 lost: bool init false;
19 [] oq<b-1 -> l: (oq’=oq+1);
20 [] oq=b-1 -> l: (lost’=true);
21 endmodule
22
23 module Server1
24 reset: bool init false;
25 [] oq>1 & cq=0 -> m11: (oq’=oq-1);
26 [] oq=1 & cq=0 -> m11: (reset’=true);
27 [] cq>1 -> m12: (cq’=cq-1);
28 [] cq=1 & oq>0 -> m12: (cq’=cq-1);
29 [] cq=1 & oq=0 -> m12: (reset’=true);
30 endmodule
31
32 module Server2
33 [] cq<N2 -> m2: (cq’=cq+1);
34 endmodule
35
36 label "goal" = lost;
37 label "stop" = reset;
38 label "running" = !reset;

A.4 Queueing system with breakdowns

PRISM model of a queue with breakdowns, used to produce the results pre-
sented in Section 3.5.5.
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1 ctmc
2
3 // The following values were extracted from Kroese & Nicola:
4 // Efficient estimation of overflow probabilities in queues
5 // with breakdowns, Performance Evaluation, 36-37, 1999, pp. 471-484.
6 // This model corresponds to the system described in the section 4.4
7 // (p. 481) of said article.
8
9 // Buffer capacity

10 const int k;
11
12 // Server
13 const double mu = 100;
14 const double xi = 3;
15 const double delta = 4;
16
17 // Sources of Type 1
18 const int NSrc1 = 5;
19 const double lambda1 = 3;
20 const double alpha1 = 3;
21 const double beta1 = 2;
22
23 // Sources of Type 2
24 const int NSrc2 = 5;
25 const double lambda2 = 6;
26 const double alpha2 = 1;
27 const double beta2 = 4;
28
29 module QueueWithBreakdowns
30
31 // Initializations
32 lost: bool init false;
33 reset: bool init false;
34 buf: [0..K-1] init 1; // Buffer, initially with one customer
35 server: bool init false; // Server, initially down
36 src1: [0..NSrc1] init 0; // Sources of Type 1, initially none active
37 src2: [0..NSrc2] init 1; // Sources of Type 2, initially one active
38
39 // Sources failure and recovery
40 [] src1>0 -> (src1 * beta1) : (src1’=src1-1);
41 [] src1<NSrc1 -> ((NSrc1-src1) * alpha1) : (src1’=src1+1);
42 [] src2>0 -> (src2 * beta2) : (src2’=src2-1);
43 [] src2<NSrc2 -> ((NSrc2-src2) * alpha2) : (src2’=src2+1);
44
45 // Server failure and recovery
46 [] server -> xi: (server’=false);
47 [] !server -> delta: (server’=true);
48
49 // Buffer in
50 [] src1>0 & buf<K-1 -> (src1 * lambda1) : (buf’=buf+1);
51 [] src1>0 & buf=K-1 -> (src1 * lambda1) : (lost’=true);
52 [] src2>0 & buf<K-1 -> (src2 * lambda2) : (buf’=buf+1);
53 [] src2>0 & buf=K-1 -> (src2 * lambda2) : (lost’=true);
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54
55 // Buffer out
56 [] server & buf>1 -> mu : (buf’=buf-1);
57 [] server & buf=1 -> mu : (reset’=true);
58 endmodule
59
60 label "goal" = lost;
61 label "stop" = reset;
62 label "running" = !reset;

A.5 Database system with redundancy

PRISM model of a database system with redundancy, used in Example 7.

1 ctmc
2
3 // The following values were extracted from José Villén-Altamirano,
4 // Importance functions for RESTART simulation of highly-dependable
5 // systems, Simulation, Vol. 83, Issue 12, December 2007, pp. 821-828.
6
7 // Redundancy level, viz. how many breaks produce a system failure
8 const int RED;
9

10 // Processors
11 global P1: [0..RED] init RED;
12 global P2: [0..RED] init RED;
13 const double PF = 2000; // Processors’ mean time to failure (in hours)
14 const double IPF = 0.01; // Processors’ inter-type failure rate
15
16 // Controllers
17 global C1: [0..RED] init RED;
18 global C2: [0..RED] init RED;
19 const double CF = 2000; // Controllers’ mean time to failure (in hours)
20
21 // Disk clusters
22 global D1: [0..RED+2] init RED+2;
23 global D2: [0..RED+2] init RED+2;
24 global D3: [0..RED+2] init RED+2;
25 global D4: [0..RED+2] init RED+2;
26 global D5: [0..RED+2] init RED+2;
27 global D6: [0..RED+2] init RED+2;
28 const double DF = 6000; // Disks’ mean time to failure (in hours)
29
30 // Repair rates for failures of type 1 and 2 resp.
31 const double R1 = 1.0;
32 const double R2 = 0.5;
33
34 module Processors
35 [] P1 > 0 -> (P1/PF)*(1-IPF): (P1’=P1-1)
36 + (P1/PF)*( IPF): (P1’=P1-1)&(P2’=P2-1);
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37 [] P2 > 0 -> (P2/PF)*(1-IPF): (P2’=P2-1)
38 + (P2/PF)*( IPF): (P2’=P2-1)&(P1’=P1-1);
39 endmodule
40
41 module Controllers
42 [] C1>0 -> C1/CF: (C1’=C1-1);
43 [] C2>0 -> C2/CF: (C2’=C2-1);
44 endmodule
45
46 module DiskClusters
47 [] D1>0 -> D1/DF: (D1’=D1-1);
48 [] D2>0 -> D2/DF: (D2’=D2-1);
49 [] D3>0 -> D3/DF: (D3’=D3-1);
50 [] D4>0 -> D4/DF: (D4’=D4-1);
51 [] D5>0 -> D5/DF: (D5’=D5-1);
52 [] D6>0 -> D6/DF: (D6’=D6-1);
53 endmodule
54
55 // Number of failed components in the system
56 formula NFails = (2*RED-P1-P2)
57 + (2*RED-C1-C2)
58 + (6*(RED+2)-D1-D2-D3-D4-D5-D6);
59
60 // Operational Components in the minimal cutset
61 formula minOC = min(P1, P2,
62 C1, C2,
63 D1-2, D2-2, D3-2, D4-2, D5-2, D6-2);
64
65 module Repairman
66 f: bool init false;
67 // Type 1 failures on processors ...
68 [] !f & P1<RED -> 0.5 * R1 * (RED-P1)/NFails: (P1’=P1+1)
69 + 0.5 * R1 * (RED-P1)/NFails: (P1’=P1+1) & (f’=!f);
70 [] !f & P2<RED -> 0.5 * R1 * (RED-P2)/NFails: (P2’=P2+1)
71 + 0.5 * R1 * (RED-P2)/NFails: (P2’=P2+1) & (f’=!f);
72 // ... on controllers ...
73 [] !f & C1<RED -> 0.5 * R1 * (RED-C1)/NFails: (C1’=C1+1)
74 + 0.5 * R1 * (RED-C1)/NFails: (C1’=C1+1) & (f’=!f);
75 [] !f & C2<RED -> 0.5 * R1 * (RED-C2)/NFails: (C2’=C2+1)
76 + 0.5 * R1 * (RED-C2)/NFails: (C2’=C2+1) & (f’=!f);
77 // ... and on disks.
78 [] !f & D1<RED+2 -> 0.5 * R1 * (RED+2-D1)/NFails: (D1’=D1+1)
79 + 0.5 * R1 * (RED+2-D1)/NFails: (D1’=D1+1) & (f’=!f);

80 [] !f & D2<RED+2 -> 0.5 * R1 * (RED+2-D2)/NFails: (D2’=D2+1)
81 + 0.5 * R1 * (RED+2-D2)/NFails: (D2’=D2+1) & (f’=!f);

82 [] !f & D3<RED+2 -> 0.5 * R1 * (RED+2-D3)/NFails: (D3’=D3+1)
83 + 0.5 * R1 * (RED+2-D3)/NFails: (D3’=D3+1) & (f’=!f);

84 [] !f & D4<RED+2 -> 0.5 * R1 * (RED+2-D4)/NFails: (D4’=D4+1)
85 + 0.5 * R1 * (RED+2-D4)/NFails: (D4’=D4+1) & (f’=!f);



200 SYSTEM MODELS

86 [] !f & D5<RED+2 -> 0.5 * R1 * (RED+2-D5)/NFails: (D5’=D5+1)
87 + 0.5 * R1 * (RED+2-D5)/NFails: (D5’=D5+1) & (f’=!f);

88 [] !f & D6<RED+2 -> 0.5 * R1 * (RED+2-D6)/NFails: (D6’=D6+1)
89 + 0.5 * R1 * (RED+2-D6)/NFails: (D6’=D6+1) & (f’=!f);

90 // Type 2 failures on processors ...
91 [] f & P1<RED -> 0.5 * R2 * (RED-P1)/NFails: (P1’=P1+1)
92 + 0.5 * R2 * (RED-P1)/NFails: (P1’=P1+1) & (f’=!f);
93 [] f & P2<RED -> 0.5 * R2 * (RED-P2)/NFails: (P2’=P2+1)
94 + 0.5 * R2 * (RED-P2)/NFails: (P2’=P2+1) & (f’=!f);
95 // ... on controllers ...
96 [] f & C1<RED -> 0.5 * R2 * (RED-C1)/NFails: (C1’=C1+1)
97 + 0.5 * R2 * (RED-C1)/NFails: (C1’=C1+1) & (f’=!f);
98 [] f & C2<RED -> 0.5 * R2 * (RED-C2)/NFails: (C2’=C2+1)
99 + 0.5 * R2 * (RED-C2)/NFails: (C2’=C2+1) & (f’=!f);

100 // ... and on disks.
101 [] f & D1<RED+2 -> 0.5 * R2 * (RED+2-D1)/NFails: (D1’=D1+1)
102 + 0.5 * R2 * (RED+2-D1)/NFails: (D1’=D1+1) & (f’=!f);

103 [] f & D2<RED+2 -> 0.5 * R2 * (RED+2-D2)/NFails: (D2’=D2+1)
104 + 0.5 * R2 * (RED+2-D2)/NFails: (D2’=D2+1) & (f’=!f);

105 [] f & D3<RED+2 -> 0.5 * R2 * (RED+2-D3)/NFails: (D3’=D3+1)
106 + 0.5 * R2 * (RED+2-D3)/NFails: (D3’=D3+1) & (f’=!f);

107 [] f & D4<RED+2 -> 0.5 * R2 * (RED+2-D4)/NFails: (D4’=D4+1)
108 + 0.5 * R2 * (RED+2-D4)/NFails: (D4’=D4+1) & (f’=!f);

109 [] f & D5<RED+2 -> 0.5 * R2 * (RED+2-D5)/NFails: (D5’=D5+1)
110 + 0.5 * R2 * (RED+2-D5)/NFails: (D5’=D5+1) & (f’=!f);

111 [] f & D6<RED+2 -> 0.5 * R2 * (RED+2-D6)/NFails: (D6’=D6+1)
112 + 0.5 * R2 * (RED+2-D6)/NFails: (D6’=D6+1) & (f’=!f);

113 endmodule
114
115 label "reference" = true;
116 label "goal" = (P1=0) | (P2=0)
117 | (C1=0) | (C2=0)
118 | (D1<=2) | (D2<=2) | (D3<=2) | (D4<=2) | (D5<=2) | (D6<=2);

A.6 Tandem queue

IOSA model of a (continuous time) tandem queue, used to produce the results
presented in Section 4.6.2.

1 const int c = 8; // Capacity of both queues
2
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3 // The following values were taken from Marnix Garvels’ PhD Thesis:
4 // The splitting method in rare event simulation, p. 85.
5 const int lambda = 3; // rate(-> q1 )
6 const int mu1 = 2; // rate( q1 -> q2 )
7 const int mu2 = 6; // rate( q2 ->)
8
9 // The following values are in p. 61 of the same work:

10 // const int lambda = 1;
11 // const int mu1 = 4;
12 // const int mu2 = 2;
13
14 module Arrivals
15 clk0: clock; // External arrivals ~ Exponential(lambda)
16 [P0!] @ clk0 -> (clk0’= exponential(lambda));
17 endmodule
18
19 module Queue1
20 q1: [0..c];
21 clk1: clock; // Queue1 processing ~ Exponential(mu1)
22 // Packet arrival
23 [P0?] q1 == 0 -> (q1’= q1+1) & (clk1’= exponential(mu1));
24 [P0?] q1 > 0 & q1 < c -> (q1’= q1+1);
25 [P0?] q1 == c -> ;
26 // Packet processing
27 [P1!] q1 == 1 @ clk1 -> (q1’= q1-1);
28 [P1!] q1 > 1 @ clk1 -> (q1’= q1-1) & (clk1’= exponential(mu1));
29 endmodule
30
31 module Queue2
32 q2: [0..c] init 1;
33 clk2: clock; // Queue2 processing ~ Exponential(mu2)
34 // Packet arrival
35 [P1?] q2 == 0 -> (q2’= q2+1) & (clk2’= exponential(mu2));
36 [P1?] q2 > 0 & q2 < c -> (q2’= q2+1);
37 [P1?] q2 == c -> ;
38 // Packet processing
39 [P2!] q2 == 1 @ clk2 -> (q2’= q2-1);
40 [P2!] q2 > 1 @ clk2 -> (q2’= q2-1) & (clk2’= exponential(mu2));
41 endmodule
42
43 properties
44 P( q2 > 0 U q2 == c ) // transient
45 S( q2 == c ) // steady-state
46 endproperties

A.7 Tandem queue (alternative)

PRISM model of a (continuous time) tandem queue, used to produce the
results presented in Section 4.6.2. This queue, modelled in the PRISM input
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language, is equivalent to the one described using the IOSA model syntax in
Appendix A.6.

1 ctmc
2
3 const int c; // Queues capacity
4 const double lambda = 3; // rate(--> q1 )
5 const double mu1 = 2; // rate( q1 --> q2 )
6 const double mu2 = 6; // rate( q2 -->)
7
8 module Arrival
9 // External packet arrival

10 [P0] true -> lambda: true;
11 endmodule
12
13 module Queue1
14 q1: [0..c] init 0;
15 // Packet arrival
16 [P0] q1<c -> 1: (q1’=q1+1);
17 [P0] q1=c -> 1: true;
18 // Packet processing
19 [P1] q1>0 -> mu1: (q1’=q1-1);
20 endmodule
21
22 module Queue2
23 q2: [0..c] init 1;
24 // Packet arrival
25 [P1] q2<c -> 1: (q2’=q2+1);
26 [P1] q2=c -> 1: true;
27 // Packet processing
28 [P2] q2>0 -> mu2: (q2’=q2-1);
29 endmodule

A.8 Triple tandem queue

IOSA model of a non-Markovian triple tandem queue, used to produce the
results presented in Section 4.6.3.

1 // The following values were extracted from José Villén-Altamirano,
2 // RESTART simulation of networks of queues with Erlang service times,
3 // Winter Simulation Conference, 2009, pp. 1146-1154.
4 // This model corresponds to the system described in Section 4.1
5
6 const int a = 2; // Service time shape parameter (‘alpha’, all queues)
7 const int b1 = 3; // Service time scale parameter (‘beta1’, Queue1)
8 const int b2 = 4; // Service time scale parameter (‘beta2’, Queue2)
9 const int b3 = 6; // Service time scale parameter (‘beta3’, Queue3)

10 const int L = 7; // Threshold occupancy (Queue3)
11 const int c = L+5; // Queues capacity (all queues)
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12
13 // Combinations tested in J. V-A’s article:
14 // L alpha beta1 beta2 beta3
15 // A) 18 2 3 4 6
16 // B) 13 3 4.5 6 9
17 // C) 20 2 6 4 6
18 // D) 16 3 9 6 9
19 // E) 24 2 10 8 6
20 // F) 21 3 15 12 9
21 //
22 // Those values of ‘L’ yield rare events of probability ~ 10-15.
23 // Alternatively the following values yield rare events ~ 10-9:
24 // L = (A:11, B:7, C:11, D:9, E:14, F:12)
25
26 module Arrivals
27 clk0: clock; // External arrivals ~ Exponential(1)
28 [P0!] @ clk0 -> (clk0’= exponential(1));
29 endmodule
30
31 module Queue1
32 q1: [0..c];
33 clk1: clock; // Queue1 processing ~ Erlang(alpha;beta1)
34 // Packet arrival
35 [P0?] q1 == 0 -> (q1’= q1+1) & (clk1’= erlang(a,b1));
36 [P0?] q1 > 0 & q1 < c -> (q1’= q1+1);
37 [P0?] q1 == c -> ;
38 // Packet processing
39 [P1!] q1 == 1 @ clk1 -> (q1’= q1-1);
40 [P1!] q1 > 1 @ clk1 -> (q1’= q1-1) & (clk1’= erlang(a,b1));
41 endmodule
42
43 module Queue2
44 q2: [0..c];
45 clk2: clock; // Queue2 processing ~ Erlang(alpha;beta2)
46 // Packet arrival
47 [P1?] q2 == 0 -> (q2’= q2+1) & (clk2’= erlang(a,b2));
48 [P1?] q2 > 0 & q2 < c -> (q2’= q2+1);
49 [P1?] q2 == c -> ;
50 // Packet processing
51 [P2!] q2 == 1 @ clk2 -> (q2’= q2-1);
52 [P2!] q2 > 1 @ clk2 -> (q2’= q2-1) & (clk2’= erlang(a,b2));
53 endmodule
54
55 module Queue3
56 q3: [0..c];
57 clk3: clock; // Queue3 processing ~ Erlang(alpha;beta3)
58 // Packet arrival
59 [P2?] q3 == 0 -> (q3’= q3+1) & (clk3’= erlang(a,b3));
60 [P2?] q3 > 0 & q3 < c -> (q3’= q3+1);
61 [P2?] q3 == c -> ;
62 // Packet processing
63 [P3!] q3 == 1 @ clk3 -> (q3’= q3-1);
64 [P3!] q3 > 1 @ clk3 -> (q3’= q3-1) & (clk3’= erlang(a,b3));
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65 endmodule
66
67 properties
68 S( q3 >= L ) // steady-state
69 endproperties

A.9 Queueing system with breakdowns

Summarised version of the IOSA model for a queue with breakdowns, used
to produce the results presented in Section 4.6.4.

1 // The following values were extracted from Kroese & Nicola,
2 // Efficient estimation of overflow probabilities in queues
3 // with breakdowns, Performance Evaluation, 36-37, 1999, pp. 471-484.
4 // This model corresponds to the system described in Section 4.4
5
6 // Sources of Type 1
7 const int lambda1 = 3; // Production rate
8 const int alpha1 = 3; // Repair rate
9 const int beta1 = 2; // Fail rate

10
11 // Sources of Type 2
12 const int lambda2 = 6; // Production rate
13 const int alpha2 = 1; // Repair rate
14 const int beta2 = 4; // Fail rate
15
16 // Server
17 const int mu = 100; // Processing rate
18 const int delta = 4; // Repair rate
19 const int gama = 3; // Fail rate
20
21 // Buffer capacity: 40, 60, 80, 100, 120, 140, 160
22 const int K = 120;
23
24 /////////////////////////////////////////////////////////////////////
25 //
26 // Type 1 Sources | Total: 5
27 // | Initially on: 0
28
29 module T1S1
30 on11: bool init false;
31 clkF11: clock; // Type 1 sources Failures ~ exp(beta1)
32 clkR11: clock; // Type 1 sources Repairs ~ exp(alpha1)
33 clkP11: clock; // Type 1 sources Production ~ exp(lambda1)
34 // Breakdowns
35 [] on11 @ clkF11 -> (on11’= false) &
36 (clkR11’= exponential(alpha1));
37 [] !on11 @ clkR11 -> (on11’= true) &
38 (clkF11’= exponential(beta1)) &
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39 (clkP11’= exponential(lambda1));
40 // Production
41 [p11!] on11 @ clkP11 -> (clkP11’= exponential(lambda1));
42 endmodule

...

122 module T1S5
123 on15: bool init false;
124 clkF15: clock; // Type 1 sources Failures ~ exp(beta1)
125 clkR15: clock; // Type 1 sources Repairs ~ exp(alpha1)
126 clkP15: clock; // Type 1 sources Production ~ exp(lambda1)
127 // Breakdowns
128 [] on15 @ clkF15 -> (on15’= false) &
129 (clkR15’= exponential(alpha1));
130 [] !on15 @ clkR15 -> (on15’= true) &
131 (clkF15’= exponential(beta1)) &
132 (clkP15’= exponential(lambda1));
133 // Production
134 [p15!] on15 @ clkP15 -> (clkP15’= exponential(lambda1));
135 endmodule
136
137 /////////////////////////////////////////////////////////////////////
138 //
139 // Type 2 Sources | Total: 5
140 // | Initially on: 1
141
142 module T2S1
143 on21: bool init true;
144 clkF21: clock; // Type 2 sources Failures ~ exp(beta2)
145 clkR21: clock; // Type 2 sources Repairs ~ exp(alpha2)
146 clkP21: clock; // Type 2 sources Production ~ exp(lambda2)
147 // Breakdowns
148 [] on21 @ clkF21 -> (on21’= false) &
149 (clkR21’= exponential(alpha2));
150 [] !on21 @ clkR21 -> (on21’= true) &
151 (clkF21’= exponential(beta2)) &
152 (clkP21’= exponential(lambda2));
153 // Production
154 [p21!] on21 @ clkP21 -> (clkP21’= exponential(lambda2));
155 endmodule

...

203 module T2S5
204 on25: bool init false;
205 clkF25: clock; // Type 2 sources Failures ~ exp(beta2)
206 clkR25: clock; // Type 2 sources Repairs ~ exp(alpha2)
207 clkP25: clock; // Type 2 sources Production ~ exp(lambda2)
208 // Breakdowns
209 [] on25 @ clkF25 -> (on25’= false) &
210 (clkR25’= exponential(alpha2));
211 [] !on25 @ clkR25 -> (on25’= true) &
212 (clkF25’= exponential(beta2)) &
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213 (clkP25’= exponential(lambda2));
214 // Production
215 [p25!] on25 @ clkP25 -> (clkP25’= exponential(lambda2));
216 endmodule
217
218 ////////////////////////////////////////////////////////////////////
219 //
220 // Buffered server | Keeps track of ‘overflow’ and ‘reset’
221 // | Translated from bluemoon’s homonymous model
222
223 module BufferedServer
224 buf: [0..K] init 1;
225 clkF: clock; // Server Failure ~ exp(gama)
226 clkR: clock; // Server Repair ~ exp(delta)
227 clkP: clock; // Server Processing ~ exp(mu)
228 on: bool init false; // Server on?
229 reset: bool init false;
230 // Server failure and recovery
231 [] on @ clkF -> (on’= false) &
232 (clkR’= exponential(delta));
233 [] !on @ clkR -> (on’= true) &
234 (clkF’= exponential(gama)) &
235 (clkP’= exponential(mu));
236 // Buffer out (dequeueing by server processing)
237 [] on & buf > 1 @ clkP -> (buf’= buf-1) &
238 (clkP’= exponential(mu));
239 [] on & buf == 1 @ clkP -> (buf’= buf-1) &
240 (reset’= true);
241 // Buffer in (enqueueing by sources production)
242 [p11?] buf == 0 -> (buf’= buf+1) & (clkP’= exponential(mu));
243 [p11?] 0 < buf & buf < K -> (buf’= buf+1);
244 [p11?] buf == K -> ;

...

277 [p25?] buf == 0 -> (buf’= buf+1) & (clkP’= exponential(mu));
278 [p25?] 0 < buf & buf < K -> (buf’= buf+1);
279 [p25?] buf == K -> ;
280 endmodule
281
282 properties
283 P( !reset U buf == K ) // transient
284 endproperties

A.10 Database system with redundancy

Summarised version of an IOSA model for a database with redundancy 2.
These models were used to produce the results presented in Section 4.6.5.
The number of system components increases with the redundancy value.
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1 const int PF = 50; // Processors’ mean time to failure
2 const int CF = 50; // Controllers’ mean time to failure
3 const int DF = 150; // Disks’ mean time to failure
4
5 /////////////////////////////////////////////////////////////////
6 //
7 // Disk clusters | Num clusters: 6
8 // | Redundancy per cluster: 4
9 // | Mean time to failure: DF

10 // | Num failures to breakdown per cluster: 2
11
12 module Disk11
13 d11f: bool init false; // Disk failed?
14 d11t: [1..2]; // Failure type
15 d11cF1: clock; // Type 1 failure ~ exp(1/(DF*2))
16 d11cF2: clock; // Type 2 failure ~ exp(1/(DF*2))
17 d11cR1: clock; // Repair for type 1 failure ~ exp(1.0)
18 d11cR2: clock; // Repair for type 2 failure ~ exp(0.5)
19 [] !d11f @ d11cF1 -> (d11f’= true) &
20 (d11t’= 1) &
21 (d11cR1’= exponential(1.0));
22 [] !d11f @ d11cF2 -> (d11f’= true) &
23 (d11t’= 2) &
24 (d11cR2’= exponential(0.5));
25 [] d11f & d11t==1 @ d11cR1 -> (d11f’= false) &
26 (d11cF1’= exponential(1/(DF*2))) &
27 (d11cF2’= exponential(1/(DF*2)));
28 [] d11f & d11t==2 @ d11cR2 -> (d11f’= false) &
29 (d11cF1’= exponential(1/(DF*2))) &
30 (d11cF2’= exponential(1/(DF*2)));
31 endmodule

...

473 module Disk64
474 d64f: bool init false; // Disk failed?
475 d64t: [1..2]; // Failure type
476 d64cF1: clock; // Type 1 failure ~ exp(1/(DF*2))
477 d64cF2: clock; // Type 2 failure ~ exp(1/(DF*2))
478 d64cR1: clock; // Repair for type 1 failure ~ exp(1.0)
479 d64cR2: clock; // Repair for type 2 failure ~ exp(0.5)
480 [] !d64f @ d64cF1 -> (d64f’= true) &
481 (d64t’= 1) &
482 (d64cR1’= exponential(1.0));
483 [] !d64f @ d64cF2 -> (d64f’= true) &
484 (d64t’= 2) &
485 (d64cR2’= exponential(0.5));
486 [] d64f & d64t==1 @ d64cR1 -> (d64f’= false) &
487 (d64cF1’= exponential(1/(DF*2))) &
488 (d64cF2’= exponential(1/(DF*2)));
489 [] d64f & d64t==2 @ d64cR2 -> (d64f’= false) &
490 (d64cF1’= exponential(1/(DF*2))) &
491 (d64cF2’= exponential(1/(DF*2)));
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492 endmodule
493
494 /////////////////////////////////////////////////////////////////
495 //
496 // Controllers | Num types: 2
497 // | Redundancy per type: 2
498 // | Mean time to failure: CF
499
500 module Controller11
501 c11f: bool init false; // Controller failed?
502 c11t: [1..2]; // Failure type
503 c11cF1: clock; // Type 1 failure ~ exp(1/(CF*2))
504 c11cF2: clock; // Type 2 failure ~ exp(1/(CF*2))
505 c11cR1: clock; // Repair for type 1 failure ~ exp(1.0)
506 c11cR2: clock; // Repair for type 2 failure ~ exp(0.5)
507 [] !c11f @ c11cF1 -> (c11f’= true) &
508 (c11t’= 1) &
509 (c11cR1’= exponential(1.0));
510 [] !c11f @ c11cF2 -> (c11f’= true) &
511 (c11t’= 2) &
512 (c11cR2’= exponential(0.5));
513 [] c11f & c11t==1 @ c11cR1 -> (c11f’= false) &
514 (c11cF1’= exponential(1/(CF*2))) &
515 (c11cF2’= exponential(1/(CF*2)));
516 [] c11f & c11t==2 @ c11cR2 -> (c11f’= false) &
517 (c11cF1’= exponential(1/(CF*2))) &
518 (c11cF2’= exponential(1/(CF*2)));
519 endmodule

...

583 /////////////////////////////////////////////////////////////////
584 //
585 // Processors | Num types: 2
586 // | Redundancy per type: 2
587 // | Mean time to failure: PF
588
589 module Processor11
590 p11f: bool init false; // Processor failed?
591 p11t: [1..2]; // Failure type
592 p11cF1: clock; // Type 1 failure ~ exp(1/(PF*2))
593 p11cF2: clock; // Type 2 failure ~ exp(1/(PF*2))
594 p11cR1: clock; // Repair for type 1 failure ~ exp(1.0)
595 p11cR2: clock; // Repair for type 2 failure ~ exp(0.5)
596 [] !p11f @ p11cF1 -> (p11f’= true) &
597 (p11t’= 1) &
598 (p11cR1’= exponential(1.0));
599 [] !p11f @ p11cF2 -> (p11f’= true) &
600 (p11t’= 2) &
601 (p11cR2’= exponential(0.5));
602 [] p11f & p11t==1 @ p11cR1 -> (p11f’= false) &
603 (p11cF1’= exponential(1/(PF*2))) &
604 (p11cF2’= exponential(1/(PF*2)));
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605 [] p11f & p11t==2 @ p11cR2 -> (p11f’= false) &
606 (p11cF1’= exponential(1/(PF*2))) &
607 (p11cF2’= exponential(1/(PF*2)));
608 endmodule

...

672 properties
673 S( (d11f & d12f) | (d11f & d13f) | (d11f & d14f) | // Disk cl. #1
674 (d12f & d13f) | (d12f & d14f) | (d13f & d14f) |
675 (d21f & d22f) | (d21f & d23f) | (d21f & d24f) | // Disk cl. #2
676 (d22f & d23f) | (d22f & d24f) | (d23f & d24f) |
677 (d31f & d32f) | (d31f & d33f) | (d31f & d34f) | // Disk cl. #3
678 (d32f & d33f) | (d32f & d34f) | (d33f & d34f) |
679 (d41f & d42f) | (d41f & d43f) | (d41f & d44f) | // Disk cl. #4
680 (d42f & d43f) | (d42f & d44f) | (d43f & d44f) |
681 (d51f & d52f) | (d51f & d53f) | (d51f & d54f) | // Disk cl. #5
682 (d52f & d53f) | (d52f & d54f) | (d53f & d54f) |
683 (d61f & d62f) | (d61f & d63f) | (d61f & d64f) | // Disk cl. #6
684 (d62f & d63f) | (d62f & d64f) | (d63f & d64f) |
685 (c11f & c12f) | // Controllers type 1
686 (c21f & c22f) | // Controllers type 2
687 (p11f & p12f) | // Processors type 1
688 (p21f & p22f) ) // Processors type 2
689 endproperties

A.11 Oil pipeline or C(k,n: F) system

Summarised version of an IOSA model for the non-Markovian C(k, n : F)
repairable system, for n = 20 and k = 3. These models were used to produce
the results presented in Section 4.6.6. The number of system components
increases with n, but not with k.

1 // These distributions are used in Section 4.1 of José Villén-
2 // Altamirano: RESTART simulation of non-Markov consecutive-k-
3 // out-of-n:F repairable systems, Reliability Engineering and
4 // System Safety, Vol. 95, Issue 3, 2010, pp. 247-254:
5 // - Repair time ~ Lognormal(1.21,0.8)
6 // - Nodes lifetime ~ Exponential(lambda) or Rayleigh(sigma)
7 // for (lambda,sigma) in {(0.001 , 798.000),
8 // (0.0003, 2659.615),
9 // (0.0001, 7978.845)}

10
11 module BE_pipe1
12 c_fail1: clock;
13 c_repair1: clock;
14 inform1: [0..2] init 0; // 0 idle, 1 inform fail, 2 inform repair
15 broken1: [0..2] init 0; // 0 operational, 1 broken, 2 under repair
16 // failing (by itself)
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17 [fpipe1!] broken1==0 & inform1==0 @ c_fail1 -> (inform1’= 1) &
18 (broken1’= 1);
19 [fail1!!] inform1 == 1 -> (inform1’= 0);
20 // reparation (with repairman)
21 [repair1??] broken1==1 & inform1==0
22 -> (broken1’= 2) &
23 (c_repair1’= lognormal(1.21,0.8));
24 [rpipe1!] broken1 == 2 @ c_repair1 -> (inform1’= 2) &
25 (broken1’= 0) &
26 (c_fail1’= rayleigh(729));

27 [repaired1!!] inform1 == 2 -> (inform1’= 0);
28 endmodule

...

370 module BE_pipe20
371 c_fail20: clock;
372 c_repair20: clock;
373 inform20: [0..2] init 0; // 0 idle, 1 inform fail, 2 inform repair
374 broken20: [0..2] init 0; // 0 operational, 1 broken, 2 under repair
375 // failing (by itself)
376 [fpipe20!] broken20==0 & inform20==0 @ c_fail20 -> (inform20’= 1) &
377 (broken20’= 1);
378 [fail20!!] inform20 == 1 -> (inform20’= 0);
379 // reparation (with repairman)
380 [repair20??] broken20==1 & inform20==0
381 -> (broken20’= 2) &
382 (c_repair20’= lognormal(1.21,0.8));
383 [rpipe20!] broken20 == 2 @ c_repair20 -> (inform20’= 2) &
384 (broken20’= 0) &
385 (c_fail20’= rayleigh(729));
386 [repaired20!!] inform20 == 2 -> (inform20’= 0);
387 endmodule
388
389 module Repairman
390 xs[20] : bool init false; // Array of Booleans
391 busy : bool init false;
392 // Register a failure
393 [ fail1?? ] -> (xs[0]’= true);

...

411 [ fail20?? ] -> (xs[19]’= true);
412 // Begin a repair
413 [ repair1!! ] busy == false & fsteq(xs,true) == 0
414 -> (busy’= true);

...

450 [ repair20!! ] busy == false & fsteq(xs,true) == 19
451 -> (busy’= true);
452 // Finish a repair
453 [ repaired1?? ] -> (busy’= false) & (xs[0]’= false);
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...

471 [ repaired20?? ] -> (busy’= false) & (xs[19]’= false);
472 endmodule
473
474 properties
475 S( ( broken1>0 & broken2>0 & broken3>0 ) |
476 ( broken2>0 & broken3>0 & broken4>0 ) |

...

491 ( broken17>0 & broken18>0 & broken19>0 ) |
492 ( broken18>0 & broken19>0 & broken20>0 ) )
493 endproperties



Appendix:

Measure theory B
Some fundamentals of measure theory are epitomised here. These concepts
are useful to understand the definitions and results presented in Appendix C,
and also to comprehend the more theoretical aspects of Sections 2.3.3, 3.3.4
and 4.4.

All results in this appendix are presented without proof. The interested
reader can find a full introduction to measure theory in classical works like
[Bre68] and the more modern [Dur10]. Also, N. Vaillant’s online tutorial at
www.probability.net is highly recommended.

In what follows Ω will denote an arbitrary set and 2Ω its power set. If
A ∈ 2Ω then Ac will denote its complementary set, i.e. A ∩ Ac = ∅ and
A ]Ac = Ω. The basic building blocks in measure theory are the algebraic
structures known as σ-algebra:

Definition 23 (σ-algebra). A σ-algebra over Ω is any collection F ⊆ 2Ω

satisfying: Ω ∈ F , A ∈ F ⇒ Ac ∈ F , and for any denumerable family of
subsets of Ω, say {Ωi}i∈N, its denumerable union is also part of the σ-algebra,
viz. ⋃i∈N Ωi ∈ F .

If F is a σ-algebra over Ω, the pair (Ω,F ) is denoted a measurable space.
The trivial σ-algebras of Ω are {∅,Ω} and 2Ω. The elements of F in a
measurable space (Ω,F ) are called the measurable sets of the σ-algebra.

Any collection C ⊆ 2Ω can be turned into a σ-algebra, denote it σ(C ), by
including into σ(C ) all the complements and denumerable unions of the sets
originally in C . This way one can generate a σ-algebra from an arbitrary
collection of subsets of Ω. This concept has an alternative definition which
we give next.

Definition 24. Let C ⊆ 2Ω, then the σ-algebra generated by C is the intersec-
tion of all σ-algebras containing C , and it is denoted σ(C ), i.e.

σ(C ) .=
⋂{

F ⊆ 2Ω
∣∣∣ C ⊆ F ∧ F is a σ-algebra

}
.

Each element of C is called a generator.

http://www.probability.net/
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Property 11. Let C ⊆ 2Ω, then σ(C ) is a σ-algebra, and in fact it is the
minimal σ-algebra containing C .

Definition 24 provides the means to generate a σ-algebra from arbitrary
collections of subsets of Ω. It is also possible to generate a new σ-algebra
using σ-algebras as building blocks.

The notion is analogous to the Cartesian product, which for sets {Ωi}ni=1
and corresponding collections {Ci}ni=1 on their power sets, defines a rectangle
A ⊆

∏n
i=1 Ωi as any set A = A1×A2×· · ·×An = ∏n

i=1Ai s.t. Ai ∈ Ci∪{Ωi}
for all i = 1, . . . , n. To obtain a product σ-algebra rather than a product
set, it is necessary to work with measurable rectangles rather than arbitrary
rectangles.

Definition 25. Let C = {(Ωi,Fi)}ni=1 be a finite collection of measurable
spaces. A measurable rectangle is any rectangle from ∏n

i=1 Ωi whose con-
stituent sets are measurable sets from {Fi}ni=1.

Definition 26. The product σ-algebra of C from Definition 25, denoted⊗n
i=1 Fi, is the σ-algebra generated by the measurable rectangles, viz.

n⊗
i=1

Fi
.= σ

({
n∏
i=1

Ai

∣∣∣∣∣Ai ∈ Fi for all i = 1, 2, . . . , n
})

.

Since the product is finite we will also write F1 ⊗F2 ⊗ · · · ⊗Fn = ⊗n
i=1 Fi.

All of the above talks about structural aspects of measurability. However,
the very name of this theory comes from a more dynamical perspective, if
you please, involving functions acting over such structures. Measure theory
concerns itself with what can be measured—and what cannot; at its core lie
the concepts of measure and probability measure.

Definition 27. Let C ⊆ 2Ω s.t. ∅ ∈ C and let µ : C → [0,∞). The function
µ is a measure on C if µ(∅) = 0 and it is σ-additive, i.e. for any sequence
{Ai}i∈N of pairwise disjoint elements of C where ⊎i∈NAi ∈ C , µ satisfies
µ(⊎i∈NAi) = ∑

i∈N µ(Ai). If besides µ(Ω) = 1 (and thus µ : C → [0, 1]), then
µ is a probability measure on C .

Therefore provided a measurable space (Ω,F ), a measure µ on F , and
a measurable set A ∈ F , the measure of A according to µ is µ(A) ∈ [0,∞).
The Dirac probability measure concentrated on {ω} ⊆ Ω, which we will denote
δω, is the unique probability measure s.t. δω(Q) = 1 if ω ∈ Q and δω(Q) = 0
otherwise, for every Q ∈ F .
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Measurability can be extended to consider the space of functions, bringing
forth the concept of measurable functions which is defined as follows:

Definition 28. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Then the
function f : Ω1 → Ω2 is a measurable function if the inverse image of every
measurable set from F2 is a measurable set of F1, i.e.

∀B ∈ F2 . f
−1(B) ∈ F1 .

The measurability of f in the previous definition is sometimes denoted
f : (Ω1,F1)→ (Ω2,F2). Even though Definition 28 might give the impression
of being fabricated, several standard and widespread mathematical concepts
make use of measurable functions. Probability theory provides a fine example,
where a measurable function on a probability space is commonly known as a
random variable.

This appendix concludes introducing some concepts which will be ex-
tensively used along Appendix C. Given a measurable space (Ω,F ), it is
customary to denote by ∆(Ω) the set of all probability measures on F .
Furthermore there is a standard construction by [Gir82] to endow ∆(Ω) with
a σ-algebra. ∆(F ) will thus denote the Giry σ-algebra generated by the sets
of probability measures

∆B(Q) .= { µ : F → [0, 1] | µ(Q) ∈ B },

where B ∈ B([0, 1]) and Q ∈ F . Here B(Υ) is the Borel σ-algebra on the
set Υ, viz. the σ-algebra generated by the open sets of Υ. The following
proposition states that the Giry σ-algebra can be denumerably generated.

Proposition 12. Let (Ω,F ) be a measurable space and denote ∆>q(Q) the set
of probability measures {µ ∈ ∆(Ω) | µ(Q) > q} for any Q ∈ F and q ∈ [0, 1].
Then

∆(F ) = σ
({

∆>q(Q)
∣∣∣ q ∈ Q ∩ [0, 1]

})
.



Appendix:

Nondeterministic LMP C
Nondeterministic Labelled Markov Processes (NLMP, [DSW12]) are the result
of several efforts to provide the theory of labelled Markov processes from
[Des99,DEP02] with internal nondeterminism. NLMP stand out among other
approaches seeking the same goal, because they follow the same strategy than
Desharnais et al. in [DEP02], who rely on the sound foundations provided by
measure theory—see Appendix B.

The general goal is to extend the modelling capabilities of Markov pro-
cesses with: continuous state spaces; continuous time evolution; external
nondeterminism, i.e. governed by the environment; and internal nondeter-
minism, i.e. decided upon by each process. The formalism of labelled Markov
processes covers the first three items, using a labelled set of actions to encode
interactions with the environment. This formalism defines reactive models
where different transition probabilities are enabled for each action. Thus
uncertainty is (only) considered to be probabilistic.

Definition 29 (LMP, [DEP02]). A labelled Markov process (LMP) is a tuple
(S,Σ, {τa | a ∈ L}) where (S,Σ) is a measurable space and, for each action
label a ∈ L, the transition probability function τa : S → ∆(S) ∪ {0} is
a measurable function, where 0 : Σ → [0, 1] denotes the null measure s.t.
0(Q) = 0 for all Q ∈ Σ.

The value τa(s)(Q) ∈ [0, 1] represents the probability of making a transi-
tion to any state in Q, provided that the system is in state s and that the
action label a has been accepted. Therefore, the transition probability is
actually a conditional probability, where the probability of Q is conditioned
on the facts that the system is in state s and it actually reacts to action
a. Originally [Des99] allow τa(s) to be a subprobability measure, i.e. it could
happen that τa(s)(S) < 1. Instead and following [BDSW14], when action a is
refused we let τa(s) = 0.

Nondeterministic Labelled Markov Processes were introduced in [DSW12,
DWTC09] as a generalisation of LMP to include internal nondeterminism.
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Specifically, they allow equally labelled transition probabilities to leave out
the same state. Two constraints required by the NLMP formalism set it apart
from other approaches which pursue similar goals:

(a) the transition function maps states to measurable sets of proba-
bility measures, and

(b) each transition function must be measurable.

Constraint (a) is motivated by the use of schedulers to resolve nondeterminism.
Allowing arbitrary target sets of measures could make the theory suffer from
measurability issues, namely the decisions to take future actions could be
unquantifiable. Constraint (b) is related to the use of modal operators, like
the ones LMP allow. Dealing with non-measurable transition functions could
render infeasible the measurement of certain execution traces. For examples
illustrating these motivations see [Wol12,BDSW14].

Definition 30 (NLMP, [DSW12]). A nondeterministic labelled Markov process
(NLMP) is a tuple (S,Σ, {Ta | a ∈ L}) where:

• (S,Σ) is a measurable space,
• for each label a ∈ L the nondeterministic transition function

Ta : S → ∆(Σ) is measurable.

Notice that the measurability requirement of Ta requires the definition of
a σ-algebra over its codomain, the Giry σ-algebra ∆(Σ). Such definition is a
key construction for the development of the NLMP formalism.

Definition 31 (Hit σ-algebra). Let (S,Σ) be as in Definition 30, then H(∆(Σ))
is the minimal σ-algebra containing all sets

Hξ
.= {ζ ∈ ∆(Σ) | ζ ∩ ξ 6= ∅}

for the measurable sets ξ ∈ ∆(Σ).

In Definition 31, Hξ contains all measurable sets that hit the measurable
set ξ. Also observe that T −1

a (Hξ) is the set of all states s ∈ S which, through
label a, hit the set of measures ξ. Thus, resuming the analysis of Definition 30,
for each label a ∈ L the corresponding nondeterministic transition function
Ta must be measurable from the σ-algebra of states to the hit σ-algebra of
measures, i.e. Ta : (S,Σ)→ (∆(Σ), H(∆(Σ))).

As might be expected, LMP are a special case of NLMP where Ta is the
singleton set {τa} for every label a ∈ L. Of course, that requires for single
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probability measures to be measurable in the Giry σ-algebra, viz. ∆(Σ) must
distinguish points. That condition provided, it can be verified that Ta is
measurable if and only if τa is also measurable [BDSW14].

In spite of the structure provided over the state space by Definition 30,
the theory can still suffer from measurability issues derived from an improper
(but anyway allowed by the definition) use of the labels. Because of this
NLMP have been extended in [Bud12] to provide structure to the label set
L. Thus in addition to the measurable space of states, (S,Σ), there is a
measurable space of labels, (L,Λ). The resulting transition function T then
maps states to measurable sets of the product σ-algebra Λ⊗∆(Σ), and the
hit σ-algebra on which the measurability of T depends is defined by means
of measurable rectangles.

Much of the theory of Nondeterministic Labelled Markov Processes is
devoted to the development of bisimulation relations with different degrees
of observability. Bisimilarity as defined by [Mil80] for LTS can be extended
over the much more complex world of LMP in more than one way. Two
notions have been developed by Desharnais et al., the first of which is defined
directly on states [Des99]. Therefore this definition can separate systems
which could be potentially indistinguishable from the point of view of Σ.
Later in [DDLP06] an “event-wise” bisimulation relation is introduced, hence
providing a notion of behavioural equivalence more attune to the measure-
theoretic definition of LMP. Making reference to the way in which these
relations are defined, [DDLP06] denotes the former (point-wise) relations state
bisimulations, and the latter (event-wise) relations event bisimulations.

NLMP have their own analogous state and event bisimulation relations.
There is also a third notion, denoted hit bisimulation in [BDSW14], whose
coarseness of observability lies somewhere in between the other two. Inter-
estingly, all these notions coincide under special conditions. However and in
general the state bisimilarity is (strictly) the finest and the event bisimilarity
is (strictly) the coarsest [BDSW14]. All these notions apply also to NLMP
with structure over the label set [Bud12].
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