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Abstract. The rise of Deep Learning techniques has attracted special
attention to GPUs usage for better performance of model computation.
Most frameworks for Cognitive Computing include support to offload
model training and inferencing to graphics hardware, and this is so com-
mon that GPU designers are reserving die area for special function units
tailored to accelerating Deep Learning computation. Measuring the capa-
bility of a hardware platform to run these workloads is a major concern
for vendors and consumers of this exponentially growing market. In a
previous work [9] we analyzed the execution times of the Fathom AI
workloads [2] in CPUs and CPUs+GPUs. In this work we measure the
Fathom workloads in the POWER8-based “Minsky” [15] platform, pro-
filing power consumption and energy efficiency in GPUs. We explore
alternative forms of execution via GPU power and frequency capping
with the aim of reducing Energy-to-Solution (ETS) and Energy-Delay-
Product (EDP). We show important ETS savings of up to 27% with half
of the workloads decreasing the EDP. We also expose the advantages of
frequency capping with respect to power capping in NVIDIA GPUs.

Keywords: Fathom · GPU · Power capping · Frequency capping ·
Energy-to-Solution · Energy-Delay-Product

1 Introduction

Machine learning and in particular neural networks was a well established sub-
ject back in 1992, but from 2012 onwards its attractiveness has grown expo-
nentially both in academia and industry in the form of deep neural networks.
The main reasons are advances in algorithms, datasets, benchmarks, and hard-
ware [6]. ImageNet [8] and MNIST Database [18] are examples of benchmarks
that drove the field of Computer Vision using Deep Learning (DL) techniques.
The computational demand is so large that vendors are currently offering bet-
ter than Moore’s law improvements for specific Machine Learning workloads
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 255–262, 2019.
https://doi.org/10.1007/978-3-030-16205-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_19


256 M. D. Mazuecos Pérez et al.

through the use of special function units like NVIDIA’s Tensor Cores, Google’s
Tensor Processing Units (TPU) and Intel Nervana Neural Network Processors
(NNP). The trend in showing the prowess of hardware platform in very specific
tests [5] makes choosing the best platform for general DL difficult. Fathom [2,3]
is an attempt to cope with this need, providing eight different workloads in
different areas of DL using the TensorFlow [1] framework: AlexNet [17], Vari-
ational Autoencoder [13,16], Deep Reinforcement Learning [20], End-to-End
Memory Networks [24,27], Residual Networks [12], Sequence-to-Sequence Trans-
lation [25], Deep Speech [10] and VGG-19 [23].

The IBM Power System S822LC [15] or “Minsky” is a power-horse for DL
workloads. Equipped with two IBM POWER8 processors and four NVIDIA
Tesla P100 GPUs, the whole set exhibits an aggregated performance exceed-
ing 40 TFLOPS in single precision and 80 TFLOPS in half-precision peak per-
formance [4]. Besides those impressive computation numbers, communication
bandwidth is also remarkable as shown in Fig. 1. The technology behind this
system corresponds to one generation before Summit, the fastest supercomputer
on earth at the time of writing [26].

Fig. 1. Minsky platform data flow diagram

The energy consumed by Cognitive Computing workloads is not negligible.
For example, servers like the IBM S822LC can draw up to 2.5 kW at full load [4],
and a complex Deep Neural Network takes days to train [5]. This issue also
affects computers on the other end of the spectrum, namely wearable devices
and embedded computers powered by batteries, which have to operate under
stringent power budgets.

The basic law guiding the power drawn by processors is P ∝ V 2f , where V is
the voltage and f is the processor frequency. There are two common measures for
the energy consumed. One is Energy-to-Solution (ETS), the area under the curve
of power consumption ETS =

∫ T
0 P (t)dt, where T is the execution time and P (t)

is the instantaneous power drawn. One possible way to dynamically reduce P is
to adjust f conveniently with the so-called frequency scalers. Current processors
embed frequency scaler algorithms in silicon. Notice that in a näıve processor
model, ETS should not decrease if f decreases, as halving frequency implies
doubling computation time. However ETS gains are notable using frequency
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scaling and this is due to the processors spending most of their time waiting for
the memory and communication subsystems. The other measure to try minimize
is Energy-delay-Product EDP = ETS×T , that puts together two quantities that
appear to be inverse of each other, since decreasing ETS implies lower frequency
and therefore increasing computation time. The relation is not linear and the
EDP(f) has a global minimum in the interval of available frequencies. Voltage
scaling is also a current research topic, both for hardware designers and software
designers since the potential savings can be large [7].

In previous work [9], we showed how GPUs improve performance or Time-
to-Solution (TTS) on the IBM “Minsky” Platform for the Fathom workloads.
The contribution of this paper is the analysis of energy efficiency in the Fathom
workloads executing on the same platform using power profiles, ETS and EDP.
The ETS was improved 27% over standard execution via power and frequency
capping in the GPU. We have also obtained improvements in EDP in half of the
workloads.

The rest of the paper is organized as follows. Section 2 shows the direct and
derived power measurements using power capping. Section 3 presents the energy
consumption improvements using frequency capping. Finally, Sect. 4 summarizes
findings and discusses future research.

2 Power Analysis

In this work we decided to upgrade TensorFlow 1.0 used in our previous work [9]
to TensorFlow 1.1. Some modifications in Fathom were needed in order to run
Seq2Seq in TensorFlow 1.1, and this patch has been accepted upstream [21]. The
rest of the system software in the IBM Poughkeepsie WW Client Center [14] is
Ubuntu Server 16.04 ppc64le, NVIDIA Driver 384.66 and GCC 5.4. In Fig. 2
we assess the execution time with respect to our former work. The execution
time are the average of twenty samples. In five workloads (AlexNet, DeepQ,
Residual, Seq2Seq, VGG) the results are within a 25% difference. The rest of
the workloads (AutoEnc, MemNet) which are the shortest, taking around 16 s,
suffer from increased setup time in the newer TensorFlow.

We run all the Fathom workloads using all 20 physical cores available in
POWER8 chips and one P100 GPU. The measurements are the mean of 2 sam-
ples and the workloads have been tuned from the original Fathom to increase the
number of steps from 10 to 100 in order to increase their duration. The power
measurements were sampled with a 1-sec granularity using nvidia-smi dmon.

Using the power capping features of the NVIDIA Driver (nvidia-smi -pl
<power_limit>) we tested unlimited (300W), 250W, 200W and the mini-
mum available (150W) power caps. The power traces for each workload1 are
shown in Fig. 3. There are three groups with respect to workload duration: short
(AutoEnc, MemNet), medium (AlexNet, Residual, VGG) and long (Seq2Seq).
The P100 GPU idle power is around 27W, making the base of all these curves.

1 DeepQ measurements are missing due to system errors.
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Fig. 2. Fathom using TensorFlow 1.0 vs. TensorFlow 1.1

Power consumptions are partitioned in two: low consumption (AutoEnc, Mem-
Net, Seq2Seq) and high consumption (AlexNet, Residual, VGG). AlexNet and
Residual includes high frequency oscillations in power consumption. In general
the four power capping levels do not seem to produce significant differences in
power nor in computation time. The best power profile in terms of ETS seems
to be VGG: lower curves for 150W power capping, while not increasing the
computation time. Figure 4 presents the normalized ETS and EDP metrics for
different power capping values. The marginal gains show that the power capping
feature present in the NVIDIA driver does not adapt well to the workloads being
tested, while other workloads like password cracking and cryptocurrency mining
improve their energy efficiency [11,22]. Since the area and execution time have
slight variation, ETS and EDP figures are similar but not equal.

Fig. 3. Power traces using GPU power capping
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Fig. 4. ETS and EDP using GPU power capping

3 Improvements

The expression governing power dissipation in processors P ∝ V 2f shows an
alternative way of power capping: controlling the processor frequency directly.
We try frequency capping using nvidia-smi -ac 5004,<freq>, avoiding the
power capping mechanism used by the NVIDIA driver that controls the fre-
quency to achieve the desired power. The power profile curves in Fig. 5 include
two GPU frequencies: maximum 1488MHz and minimum 544MHz. The figures
show a more interesting behavior. Capping frequency at 544MHz, AlexNet shows
lower power consumption with little change in execution time. AutoEnc, Seq2Seq
and MemNet are also similar, and we expect lower ETS and EDP. For Residual
and VGG we have lower power curves, but execution time has increased.

Fig. 5. Power profile of workloads using GPU frequency capping
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Fig. 6. ETS and EDP using GPU frequency capping

ETS and EDP for frequency capping in Fig. 6 show clear gains. All workloads
improve energy efficiency, with AlexNet achieving 27% of ETS savings. For EDP
the first three workloads analyzed improve the metric, while Residual, Seq2Seq
and VGG increase EDP. For Seq2Seq there are energy gains with increased
execution time, but the idle power drawn is comparatively high with respect to
the load imposed by this test. Residual and VGG show worse EDP measurements
due to much longer execution times that offset the power savings.

4 Conclusion

We obtained a working version of Fathom using a more recent version of Ten-
sorFlow. The comparison with the previous version exhibits performance degra-
dation for the shortest workloads (AutoEnc, MemNet) probably due to higher
setting up and tearing down costs in TensorFlow 1.1 with respect to TensorFlow
1.0. For the rest of the workloads there are clear gains in upgrading the library.

GPU power profiles for an uncapped NVIDIA P100 card show variable power
consumption and performance profiles. AlexNet, Residual and VGG put stress
on the GPU while the rest mildly activate the transistors inside the P100 chip.

We first tried to improve energy efficiency via the GPU driver power capping
feature, but it was not successful enough. Power profiles did not exhibit good
gains, and execution times did not change significantly. We also tried the GPU
driver frequency capping feature and this significantly improved energy efficiency
for all workloads. The reason for power capping not working seems to be the
interplay between the high frequency power profile and the control loop of the
driver. The software piece controlling the frequency to achieve the power capping
is not prepared for these loads. Going back to the roots and doing frequency
capping is the correct way of improving ETS and EDP for these deep learning
workloads. For AlexNet we achieved 27% in energy savings with a slight increase
in execution time, that is an overall 28% gain in Energy-Delay-Product.

It is worth remarking that among the cryptocurrency mining and password
cracking community it is common knowledge to use power and frequency capping
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to improve energy efficiency in GPUs and memory. In the case of HashCat there
are reports of 54% [11], and 27% [22] energy efficiency improvements in Ethereum
Mining (measured in MHashes/s/W).

Future work includes frequency capping not only in the GPU, but also in the
memory subsystem of the GPU. We also plan to conduct similar benchmarking
and analysis in the state-of-the-art machine learning benchmark MLBench [19].
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