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Abstract Cellular automata (CA) models are of interest to
several scientific areas, and there is a growing interest in
exploring large systems which would need high performance
computing. In this work a CA implementation is presented
which performs well in five different NVIDIA GPU archi-
tectures, from Tesla to Maxwell, simulating systems with up
to a billion cells. Using the game of life (GoL) and a more
complex variation of GoL as examples, a performance of
5.58e6 evaluated cells/s is achieved. The two optimizations
most often used in previous studies are the use of shared
memory andMulticell algorithms. Here, these optimizations
do not improve performance in Fermi or newer architectures.
The GoL CA code running in an NVIDIA Titan X obtained a
speedup of up to∼85x and up to∼230x for a more complex
CA, compared to an optimized serial CPU implementation.
Finally, the efficiency of each GPU is analyzed in terms of
cell performance/transistors and cell performance/bandwidth
showing how the architectures improved for this particular
problem.
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1 Introduction

Cellular automata (CA) models have been used in several
research areas because they involve simple models which
can be used to simulate complex behavior. The CA are com-
posed of a regular or irregular lattice of cells, where each cell
interacts with his neighbors with a set of rules that define the
evolution of the simulated system. There is a broad array
of CA applications, including metallic materials [48], lattice
Boltzmann systems [15,44], water flow [55], solidification of
grain structures [9], urban grow modeling [4,57], heart sim-
ulations [8], wildfire spread [49], edge detection in images
[46], etcetera.

High performance computing (HPC) has allowed solv-
ing problems of great magnitude which were inaccessible
before the advent of innovative software taking advantage of
powerful HPC hardware. Several HPC hardware solutions
exist: dedicated computer clusters [56], specialized vector
hardware such as Cray supercomputers or the cell broad-
band engine architecture, FPGA, Beowulf-type clusters and,
recently hardware accelerators such as graphics process-
ing units (GPU) and the Intel many integrated core (MIC)
architecture. These last two options, GPUs and MICs, are
attractive to perform HPC calculations because of their low
implementation cost and high performance. GPUs have been
used for research works in PCs and notebooks [47,50], small
clusters [6] and they are present in 66 of the Top 500 Super-
computers List (June 2016 list [56]). Several research papers
and benchmarks have demonstrated the high performance of
GPUs compared to x86 microprocessors. Brown et al. [6]
tested simulations with the LAMMPS Molecular Dynamics
package and obtained speedups of ∼20x using two GPUs
and ∼9x using 12 CPU cores against a serial CPU execu-
tion. Preis et al. [45] implemented a Monte Carlo simulation
of the Isingmodel inGPUs, obtaining 35x of speedup against
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one CPU code implementation, and more recently Ferrero et
al. [16] obtained 155x of speedup using one GPU against an
optimized CPU serial code for the q-state Potts model.

The Game of Life (GoL) [18] is a well known CA simu-
lation, where lattice cells can have a state of either dead or
alive, and a set of simple rules define how the system changes
after each generation or time step. The GoL has been studied
and implemented inGPUs [1,20,43,50]. Perumalla et al. [43]
presented an implementation using OpenGL and its perfor-
mance was compared with a CPU implementation, and with
the Repast [32] and NetLogo [60] CPU codes, achieving up
to 16x versus the CPU execution, and nearly 103−104 x ver-
sus the Repast code. Aaby and Perumalla et al. [1] expanded
their previous work and developed aMulti-GPU/Multi-Node
implementation of GoL to run in clusters of GPUs using
CUDA [14], MPI and POSIX pthreads. They implemented
a hiding latency technique to improve the performance of
the GPU code by performing N updates of cells before com-
municating neighborhood data to other processes. This work
obtained a speedup of over 30x for Multi-GPU over a CPU
code, and over 103 x of speedup against a CPU-based Java
code. Rybacki et al. [50] used the James II framework (a
Java based simulator, available at www.jamesii.org) to test
different CA simulations, including GoL.

In previous works [29,30] different implementations of
the Game of Life (GoL) [18] CA were shown. In [30] a
preliminary version of the GoL CA was studied with dif-
ferent implementations: serial CPU, shared memory with
OpenMP, distributed memory with MPI, GPU with CUDA,
and a Multi-GPU implementation with MPI and CUDA.
The shared memory implementation had poor performance
compared with the distributedmemory implementation, both
running in the same multi-core workstation. Oxman et al.
[41] also obtained good results with a distributed memory
implementation compared with a shared memory version of
the GoL CA. In Millán et al. [29] different optimizations
were implemented and a performance analysis of the GoL
CA for serial CPU and distributed memory implementations
were studied using hardware counters [7]. The GPU code
implemented in [30] obtained good speedups (20x for the
Multi-GPU code) but a study of different optimizations pre-
viously used was not carried out. Several optimizations for
CA or Stencil codes have been implemented in the literature,
such as shared memory [10,55], multicell [2], warp special-
ization [27], and loop unrolling/prefetching [51]. The use
of the shared memory of the GPU presented a good starting
point to improve the performance of CA and Stencil codes, as
seen in [10,55], due to the high speed of sharedmemory com-
pared with global memory. The introduction of a L1 cache in
Fermi and post-Fermi GPU architectures might signal that it
is no longer necessary to use shared memory to obtain good
results [35]. Gibson et al. [19] and Topa et al. [54] tested the
GoL CA in a Fermi GPU and obtained better results using

global memory instead of shared memory. Maruyama et al.
[27] developed a Stencil diffusion equation with several opti-
mizations, included shared memory, in a Fermi and Kepler
GPUs, with good results for the Kepler GPU using several
optimizations techniques combined with shared memory.

The focus of this work is to benchmark and analyze the
performance of four HPC GPU implementations of the GoL
CA in five NVIDIA GPUs architectures, from the Tesla G96
architecture to the Maxwell GM200 architecture. A GPU
baseline code and three implementations with commonly
used optimizations techniques are tested to analyze how they
behave in different GPU architectures. These benchmarks
will allow the correct selection of which optimizations work
well in the tested architectures, and they will also show that,
for NVIDIA Fermi or newer architectures, a baseline GPU
implementation results in greater speedups than two “clas-
sic”GPUoptimizations. Several numerical experimentswere
designed to test different aspects of the GoL CA with the
four implementations. Speedups of up to∼230x are obtained
with the high range NVIDIA GeForce Titan X GPU. Also,
two new metrics are used, which consists in the performance
obtained normalized with the transistors count and the mem-
ory bandwidth of each of the tested GPUs.

This work is organized as follows. In Sect. 2 an intro-
duction to the Game of Life CA is given, followed by
the description of the Serial CPU and distributed memory
codes. Next, the GPU implementations tested in this work
are described. Section 3 includes details on the hardware
and software used, with a description of the five experiments
tested in this work. After this, results of the experiments and
a discussion of the obtained results are presented, followed
by the conclusions of this work.

2 Game of life

This section gives an introduction to the Game of Life
and specifies the code implementations for serial CPU and
distributed memory with MPI, with the GPU code imple-
mentations following.

TheGameofLife (GoL)CA [18] has been studied in detail
[20,41], and uses theMoore neighborhood (8 neighbors) [17]
with periodic boundary conditions. The evolution of the CA
is given by the states of each cell and of his neighbors, that can
take twovalues, “alive” or “dead” (1 or 0 values respectively).
At each time step, the CA checks the following rules for each
cell of the lattice:

– Any cell with a state of alive that has less than two living
neighbors will die in the next time step (isolation).

– Any cell with a state of alive that has two or three living
neighbors will live in the next time step.
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– Any cell with a state of alive that has more than three
living neighborswill die in the next time step (overcrowd-
ing).

– Any dead cell that has exactly three living neighbors will
be alive in the next time step (reproduction).

The Game of Life is a simple CA to evolve: to calculate
the new state of each cell in the lattice it is only necessary to
read nine values from memory, sum eight cell states, check
the sum with three conditional statements, and write one
value to memory. Therefore, this is not considered to be a
compute intensive problem but a memory bound problem.
Gibson et al. [20] tested the GoL CA in GPUs, conclud-
ing that a more compute intensive CA can obtain greater
speedups than theGoL. In order to test this assumption, with-
out using a significantly more complex CA algorithm such
as reaction–diffusion [53] or Lattice Boltzmann (LB) [11],
an additional numerical experiment was developed, where a
compute intensive operation (the cosine function) was added
to the GoL CA CPU serial and GPU codes. The objective is
not to observe the behavior of the GoL with a cosine opera-
tion, but just to add compute time to the calculation of each
cell to convert the problem from memory bounded to com-
pute bounded.

Gibson et al. [20] also tested the effect of increasing the
neighborhood radius from 1st to 5th neighbors. This was
considered as an important test in the GPU codes imple-
mented here, since it can increase memory pressure and the
high memory bandwidth of the GPUs could obtain greater
speedups against the CPU version. Increasing neighborhood
size causes the GoL CA to decrease “activity” because of
the increased possibility of encountering alive neighbors
(overcrowding). Therefore, Gibson et al. [20] studied initial
random probability distributions needed to guarantee activ-
ity up to a certain number of steps. These results by Gibson
will be discussed further in Sect. 3.

In the next subsections, the serial and parallel implemen-
tations of the GoL are described including the implemented
optimizations for GPU and CPU versions of the code.

2.1 CPU serial code and distributed memory
implementations

InMillán et al. [29], CPU versions of GoLwere implemented
for CPUs, for both serial and MPI processing. Four serial
implementations were tested: the baseline implementation,
the swap version that switches the current state array with
the next state array, the one_grid implementation that uses
only one array to store (with int data type) the current and
next state arrays, and the one_grid_char implementation that
uses the char data type instead of int to store the states of the
cells. The one_grid optimization resulted in the best speedup

against the baseline code in an AMD FX-8350 4GHz CPU
(∼2.2x) and is the version used here.

Three distributed memory implementations developed
with MPI were tested in [29]: baseline, one_grid, and
one_grid with char data type. Again, the one_grid version
with the integer data type had the best performance, with
speedups from ∼20 up to ∼75% against the MPI baseline
code, and it is used here to compare with the GPU imple-
mentations.

This CA implementation added ghost columns and rows,
called halo [23,29], simplifying the treatment of boundaries.

2.2 GPU code implementations

A description of GPU code implementations is given below.
Four implementations were developed for this work: a GPU
Baseline code that uses only global memory, two codes using
shared memory, and a Multicell implementation. The shared
memory versions differ mainly in their memory access pat-
tern. Code snippets are not shown in this work because they
would increase the number of pages considerably, although
the entire source code for the GPU and CPU implemen-
tations is publicly available in http://goo.gl/9X7tcy. Other
optimizations that could be analyzed in the future are: warp
specialization [3,27], kernel specialization [31], ghost cell
expansion [28,62] (specially for multi-GPU implementa-
tions), bit packing [21,41], and overlapping of calculations
between CPU and GPU [52].

The performance of these four implementations will be
affected by the different features of the GPU architectures.
The features of each of the six GPUs (comprising five
NVIDIA architectures) can be seen in Sect. 3.2. In Sect. 3.3,
the numerical experiments are executed and the results of
how each algorithm behaves in the different GPUs are dis-
cussed.

All GPU codes use three global kernels and two device
functions. The first two global kernels are common to all
implementations and they are in charge of implementing the
periodic boundary conditions of the GoL CA by copying the
halo rows (copy_Rows() kernel) and columns (copy_Cols()
kernel) into theGPUglobalmemory at the beginning of every
time step [23]. The copy_Rows() kernel copies the first row
of the lattice into the bottom halo row, next, the same kernel
copies the last lattice row into the top halo row. Once this ker-
nel finishes executing, the kernel copy_Cols() is in charge of
copying the first left column (including the first and last halo
cells) of the lattice into the right halo column, and the last
right column (also including the first and last halo cells) of
the lattice into the left halo column. A complete description
and optimizations of the halo cell pattern can be found in
ref. [23]. The third global kernel (moveKernel()) is specific
to each GPU implementation and it is detailed in the follow-
ing subsections. The two device functions are common to all
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implementations and they are in charge of adding the values
of the neighbors of a given cell (count_neighs()) and to com-
pute the next state of the cell by applying the GoL rule set
(check_rules()). These two device functions are called from
the moveKernel() global kernel. Once the moveKernel() has
finished, the next state array is swappedwith the current state
array and a new time step is started. In the next subsections,
a description of each of the GPU algorithms is given.

The memory bandwidth from the GPU global memory to
themainmemorywas not taken into account because this CA
does not need to copy data from/to the main memory once it
has started evolving in the GPU. Access to main memory is
of course necessary to output the CA configuration to storage
for off-line analysis and visualization.

2.2.1 GPU baseline algorithm

The Baseline (named GPU Baseline) code calls the moveK-
ernel() global kernel function that reads the state of the cells
from the GPU global memory and computes the GoL rule
set. It is a simple and straightforward implementation that
uses one global CUDA kernel and the two device functions,
count_neighs() and check_rules(). Each thread is responsible
of computing the next state of a single lattice cell. Using the
count_neighs() function, each thread reads fromglobalmem-
ory the state (1 or 0 values) of his eight neighbors (Moore
neighborhood), and sums its values. Next, check_rules() is
called with the value obtained from count_neighs() and the
rule set of the GoL CA is applied. Finally the next state of
the cell is stored in the next state array. The moveKernel()
global kernel function can be relatively easily modified to
accommodate more complex CA.

2.2.2 Shared algorithm v1

The first shared memory version (named Shared v1) uses a
simple approach, where each thread is responsible for copy-
ing one cell of the lattice from global memory to shared
memory [10]. Threads that belong to the halo of each block
of threads do not compute the rule set of the GoL. In Fig. 1
an example of this approach can be seen for a CA lattice of
64 × 64 cells and a GPU block size of 8 × 8 = 64 threads.

Each block has a 2D topology of 8×8 threads (blockDim.

x = 8 andblockDim.y = 8), and each thread for every block
is responsible for loading from global memory one cell and
storing its value to a shared memory array. In the example
shown in Fig. 1 cells surrounding the shared memory array
are the halo (dark gray color), and these threads do not com-
pute the GoL rule set. For this block size, halo cells represent
∼44% of the threads in the block, which will not perform
any task beyond loading data from global memory to shared
memory.Also,more blocks of threadswill be needed to cover
the entire CA lattice, as only 36 threads (green or light gray

Fig. 1 CA GPU shared memory implementation v1 Shared v1. Halo
cells (dark gray) will only copy data from global to shared memory,
and the remaining cells (green or light gray cells) will both copy data
and compute the GoL rule set (Color figure online)

cells) of the 64 threads in each block will be computing the
GoL. For a lattice of N × N cells, the blocks needed to cal-
culate the entire lattice are N/(blockDim.x − halo), and an
example of this calculation can be seen in Fig. 1.

2.3 Shared algorithm v2

The second shared memory version (named Shared v2) uses
a more complex pattern to access global memory, as imple-
mented by Topa et al. [55]: each thread correspond to one
lattice cell and is in charge of copying its state from global
to shared memory. In addition, threads from the first to the
fourth row of the 2D block of threads are in charge of copying
halo cells to sharedmemory.Unlike the Shared v1 implemen-
tation, here all threads of the block compute the GoL rule set.
An example of this memory access pattern can be seen Fig. 2.
Threads from the first/second row (green/cyan) of the block
of threads are in charge of copying the top/bottom rows of
the halo from global memory, and also of copying the cor-
ner top/bottom cells. The third/fourth (orange/blue) rows of
threads are in charge of copying the left/right columns of the
halo from global to shared memory. To calculate the num-
ber of blocks of threads in the GPU grid there is no need to
take into account the number of halo rows or columns, as it
was necessary with the Shared v1 code. In the case shown in
Fig. 2, with N = 64 and a block size of 64 threads (8× 8 2D
block), the number of blocks in each direction (for a 2D block
grid) is N/blockDim = 64/8 = 8 blocks in each direction.

2.4 Multicell algorithm

The last implementation, named Cells, uses half the number
of threads rather than use a thread for each single cell of
the lattice, because each thread computes the state of two
contiguous cell grids [2]. In Fig. 3 each thread computes the
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Fig. 2 CA GPU shared memory implementation v2 Shared v2. All
threads in the block compute the GoL rule set. All threads copy from
global to shared memory the state of a single cell. Green threads copy
data from global to shared memory for the top row of the halo, cyan
threads copy data for the bottom halo row, orange threads copy the first
left halo column, and blue threads copy the right halo column (Color
figure online)

Fig. 3 GoL GPU cells implementation. Each thread computes cell
states for two cells, (i,j) and (i,j+1). These two cells share the state of the
blue cells, while gray cells are not shared between the two calculations
(Color figure online)

next state for the cells (i,j) and (i,j+1), sharing six blue cells.
This approach should diminishmemory access, because each
thread shares access to six cell states, from a total of 12 cells
states needed by the thread (six gray cells are not shared).
The number of cells computed by each thread can actually
be changed in the code by an input parameter. In this work,
results for two cells per thread are reported in detail, but
tests for four cells per thread were also executed, without
significant changes in performance, andwill not be discussed
further.

3 Results and discussion

In this section a series of five numerical experiments are exe-
cuted in six GPUS from five different NVIDIA GPU archi-
tectures. First, this section details the hardware and software

specifications used in this work, along a short description
of the NVIDIA GPU architecture. Next, a description of
the experiments performed is given. Numerical experiment
results are discussed, and finally a summary of the results is
given.

3.1 Hardware infrastructure and software specifications

GPU, MPI and Serial simulations were executed in
four different environments: FX-8350 from the Universidad
Nacional de Cuyo (UNCuyo), 9400GT from the Universi-
dad Nacional de San Luis, Opteron from UNCuyo and K20x
from the Universidad Nacional de Córdoba. In Tables 1 and
2 it can be seen the hardware and software specifications for
each environment.

In the next subsection, a description of the NVIDIA
GPU architecture is given to facilitate the discussion of the
obtained results.

3.2 NVIDIA GPU architecture

The NVIDIA GPU architecture has been discussed in depth,
including official documentation from NVIDIA [13,33–
37,40], and research papers [5,26,42,59]. A description of
the most relevant features of the GPUs used in this work can
be seen in Table 3. References for each of the GPUs can be
seen in the last row of the same table. The GPUmodel of exe-
cution is at the thread-level. GPUs group threads into blocks.
These blocks are executed in Streaming Multiprocessors
(SM), which includes processing units and memories, and
their organization changes from architecture to architecture.
In architectures previous to Fermi, the Streaming Multipro-
cessors are calledSM, inKepler SMX, and inMaxwell SMM.
In the literature these naming differences are often disre-
garded, and the SM expression is used to refer to Streaming
Multiprocessors in all architectures. This is the convention
used here.

Table 3 give details about four features of GPUs which
require additional explanations, involving Streaming Multi-
processors (SM): Registers/SM, Blocks/SM, Warps/SM and
Threads/SM. The amount of registers that a SM can assign to
running threads at a given time is defined by Registers/SM.
The number of blocks that can be executed simultaneously
in each SM is given by Blocks/SM. Next, the number of
warps that can be schedule to execute in each SM is defined
by Warps/SM. Finally, the number of threads that a SM can
execute simultaneously is given by Threads/SM. The amount
of resources a given kernel uses from these features is called
occupancy.

Generally, occupancy has been used as an indicator for
performance, with higher occupancy resulting in higher per-
formance. Here, an example of how occupancy is calculated
follows below. In the Tesla C2050 (with Fermi architecture)
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Table 1 Hardware infrastructure used to execute the simulations

Name CPU RAM GPUs

FX-8350 AMD FX-8350 32 GB GeForce GTX Titan X (Maxwell GM200) 12 GB

8 cores at 4 GHz GeForce GTX 750ti (Maxwell GM107) 2 GB

Tesla C2050 (Fermi GF100) 3 GB

GeForce 210 (Tesla GT218) 1 GB

9400GT Intel Core 2 Quad CPU Q9550 4 GB GeForce 9400GT (Tesla G96) 0.5 GB

4 cores at 2.83 GHz

Opteron Four AMD Opteron 6272 128 GB None

16 cores each (64 cores), at 2.1 GHz

K20x Two Intel Xeon E5-2680 v2 64 GB Tesla K20x (Kepler GK110) 6 GB

10 cores each (20 cores), at 2.8 GHz

Table 2 Software specifications
used to execute the simulations

Name Linux Kernel OpenMPI GCC CUDA NVIDIA
version version Driver

FX-8350 Slackware 14.1 64 bit 3.10.17 1.8.1 4.8.2 6.5 349.16

9400GT Debian 5.0.8 64 bit 2.6.26 NA 4.3.2 5 304.54

Opteron Rocks 5.5 64 bit 3.10.46 1.8.1 4.8.1 NA NA

K20x CentOS 6.5 64 bit 2.6.32-504 NA 4.8.4 6.5 340.29

Table 3 Features of the
NVIDIA GPUs used in this
work

GPU 9400GT GT210 C2050 K20x GTX750 Titan X

Architecture Tesla Tesla Fermi Kepler Maxwell Maxwell

G96 GT218 GF100 GK110 GM107 GM200

Cores 16 16 448 2688 640 3072

Core clock 550 MHz 520 MHz 1.15 GHz 732 MHz 1.02 GHz 1 GHz

Transistors count 314 M 260 M 3100 M 7100 M 1870 M 8000 M

SM 2 2 14 14 5 24

SPs/SM 8 8 32 192 128 128

Registers/SM 8 K 16 K 32 K 64 K 64 K 64 K

Blocks/SM 8 8 8 16 32 32

Warps/SM 24 32 48 64 64 64

Threads/SM 768 1024 1536 2048 2048 2048

Shared/L1 16 16 48/16 48/16 64/24 96/24

Mem. size KB or 16/48 or 32/32

Mem. bandwidth 12.8 GB/s 9.6 GB/s 144 GB/s 250 GB/s 86.4 GB/s 336.5 GB/s

Mem. type DDR2 DDR3 GDDR5 GDDR5 GDDR5 GDDR5

Mem. width 128-bit 64-bit 384-bit 384-bit 128-bit 384-bit

Amount of 512 MB 1 GB 3 GB 6 GB 2 GB 12 GB

memory

Compute 1.1 1.2 2.0 3.5 5.0 5.2

Capability

References [12,37,59] [12,40,42] [35] [13,36] [13,33] [13]

only 32K registers can be used simultaneously per SM (see
Table 3). Using 128 threads per block, and if each thread
needs 43 registers for a given kernel, this gives a total of 5504
registers per block.Thenumber of blocks that canbe assigned

to one SM is 32K/5504 registers = 5.8 = 5 blocks. The
maximum number of blocks that a SM can execute simulta-
neously is given by Blocks/SM = 8, leaving 3 blocks that
cannot be executed because the limit of maximum number
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of registers used at a given time has been reached. Warps
are groups of 32 threads, 5 blocks × 128 threads/32 =
20warps), and with this configuration only 20 warps are
being executed from a possible 48 warp maximum. The
total number of threads which are running simultaneously
is 128 threads × 5 blocks = 640 threads of a maxi-
mum of 1536. This example would result in occupancy of
640 × 100/1536 = 41, and ∼59% of the SM is idle. If
the number of registers per thread could be reduced to 30, by
modifying the kernel code or by using the -maxregcount com-
piler flag to cause register spilling to global memory, a total
of 3840 registers would be necessary for each block, given
32K/3240 = 8.3 = 8 blocks executing simultaneously
in a SM, giving 8 blocks × 128threads/32 = 32warps
running simultaneously and 1024 threads/SM (8 blocks ×
128 threads), resulting in occupancy of 66%. Although
occupancy is considered a measure to take into account to
improve performance, it has been shown byVolkov et al. [58]
that low occupancy can sometimes give better performance
than high occupancy. Also, Hong et al. [22] have discussed
that to measure occupancy as the only metric to improve
performance might not be sufficient.

Another important measure that is used to analyze per-
formance is code divergence. A divergence appears when
a given code-path is split between different threads inside
a warp. For example, by reaching a conditional statement,
threads might take different code-paths. GPUs solve this
problem by serializing execution between the code-paths.
Threads in the same warp join parallel execution after the
divergence in the code finishes (after the conditional state-
ment ends). If the percentageof divergence in the executionof
a kernel is high, performance will likely drop for that kernel.

The Fermi architecture introduced L1 and L2 caches.
Access to global memory is cached in L1 memory. This
improves considerably the performance of codes which have
uniform memory access, and reduces the need to use shared
memory explicitly [19,54]. In the Kepler architecture this
behavior was modified, and global memory access is cached
in the L2 cache. To unify code behavior in post-Fermi archi-
tectures, the -dlcm=ca compiler flagwas used to forceKepler
and Maxwell GPUs to cache in L1, as the Fermi architecture
does. For more information on Kepler see section 1.4.4.2.
of [38], and for Maxwell see section 1.4.2.1. of [39]. The
ECC memory feature was turned off in all the GPUs that
supported.

GPUs from the Tesla architecture with a Compute Capa-
bility (CC) of 1.0–1.2 only support single precision floating
point operations [12]. From CC 1.3 and onwards, double
precision is also supported. For this reason, the numerical
experiment reported here which involves double data types,
uses single precision (float) in the 9400GTandGT210GPUs.

The next subsection details the executed numerical exper-
iments and their configuration.

3.3 Numerical experiments

Five experiments were designed to test different aspects of
the CA running in GPUs.

First, different block sizes of threads were tested for the
different GPU implementations. This is important because
computational resources (GPU core registers, shared mem-
ory,L1 cache, etc.) vary for different block sizes, and there are
no simple rules to find the optimum block size. Second, the
performance of all the GPU implementations was tested in
several NVIDIAGPUs from different NVIDIA architectures
(Tesla, Fermi, Kepler and the latest Maxwell architecture).
Third, the performance of the best GPU implementation of
each GPU was compared to the distributed memory MPI
code optimized in Millán et al. [29]. The fourth experiment
involved increasing the radius of the neighborhood from 1st
to 5th nearest neighbors, to increase the amount of data that
each thread needs, from 9 (radius = 1) to 121 (radius = 5)
number of neighbors. The GoL CA is a memory bound prob-
lem, where compute time is small compared with memory
accesses time. For this reason, the last experiment adds a
complex math operation (cosine) to the calculation of the
state of each cell, in order to increase compute time. Execut-
ing these two types ofCA, the classicalGoLwhich ismemory
bound, and the complex modification of the GoL which is
compute bound, would give an approximation of how the
GPU implementations tested in this work might behave with
other CAs.

A 2D lattice is used in all experiments, with a size of
N × N , N being 512, 1024, 2048, 4096, 8192 and 16384.
All experiments are executed for 1000 steps. The initial ran-
dom seed is the current time in nanoseconds given by the
Linux command “date +%N”. The initial random distribu-
tion of alive cells is 50% for a neighborhood radius of 1. For
the experiment with a neighborhood radius > 1 the initial
distribution of alive cells used in this work is obtained from
Gibson et al. [20], with the following values: radius = 2
with 25%, radius = 3 with 14%, radius = 4 with 10%
and radius = 5 with 4%.

The executed code in all experiments is compiled with
GCC (compiler optimizations -O3). In the case of the GPU
implementations, the code is compiled with the maximum
compute capability (CC) that each GPU supports. Results
were averaged over five simulations. Standard deviation
was generally below 1% in all cases and, therefore, error
bars are not shown in the graphs. The largest lattice sizes
(N = 8192 and N = 16384) could not be executed in some
GPUs (9400GT, GT210 and GTX750) due to the amount of
global memory each GPU has (0.5, 1 and 2GB respectively).
The next subsections show the five numerical experiments
with a discussion of the obtained results, followed by a
summary.

123



Cluster Comput

Fig. 4 Wall clock time of GPU simulations versus block size, for all
GPU versions of the code, with lattice size=4096 × 4096, executed in
the Titan X GPU

3.3.1 Different block sizes

The optimum block size of threads is generally selected by
performing benchmarks. Previous studies have shown that
performance of GPU codes varies with block size [22,51].
Execution time for the four GPU code implementations is
shown in Fig. 4, for several 2D block sizes (4 × 8 = 32,
8 × 8 = 64, 8 × 16 = 128, 12 × 16 = 192, 16 × 16 = 256,
16 × 32 = 512, 32 × 24 = 768 and 32 × 32 = 1024
threads per block). The best performance is obtained with
GPU Baseline, except for a single marginal exception. All
implementations display excellent timing for 256 (16 × 16
threads) threads per block and, therefore, all remaining exper-
iments will be executed for that block size. In Fig. 4 it
can be seen the results only for the Titan X GPU, and
similar results were obtained for the C2050 and K20X
GPUs.s

3.3.2 Performance in different GPU architectures

Numerical experiments shown in Fig. 5 test the performance
of the four GPU implementations with GPUs from five dif-
ferent NVIDIA GPU architectures previously discussed in
Sect. 3.1. The performance of the GPU implementations is
similar for all GPUs, except for the 9400GT (pre-Fermi)
GPU. The absence of L1 cache in pre-Fermi GPUs force
the use of shared memory to improve memory access perfor-
mance [10,55], and therefore improve overall performance
in this memory bound problem. For this reason, the best per-
formance for the 9400GT GPU was obtained with the GPU
Shared v1 and Shared v2 implementations, reaching about
∼2x of speedup comparedwith theBaseline code. TheBase-

Fig. 5 GoL simulations for several GPU implementations, executed in
five different NVIDIA GPUs architectures: Tesla G96 (9400GT), Tesla
(GT210), Fermi (C2050), Kepler (K20x) and Maxwell (GTX750 and
Titan X)

line code gives the best performance in Fermi and post-Fermi
architectures. This is due to the implicit and automatic use
of the L1 cache of global memory loads, a behavior also
seen in [19,54] for CA simulations and in Maruyama et al.
for Stencil Computation [27]. In the G96 architecture the
Shared v2 implementation is ∼1.05x faster than Shared v1,
while this changes to ∼1.2x faster for post-G96 architec-
tures. TheMulticell implementation has a performance close
to the Baseline code, but the results in this work do not show
any benefit to implement aMulticell approachwithout shared
memory for pre-Fermi architectures, as seen by Balasalle et
al. [2]. The performance of all GPU implementations has a
N 2 scaling with lattice size, which is the expected scaling
for a good parallel implementation and for this type of prob-
lems.

3.3.3 Benchmarks for different lattice sizes

In a previous work by Millán et al. [29] the GoL was opti-
mized for serial CPU and distributed memory with MPI
execution. In this work, those codes are used to compare
with the performance of the GPU implementations presented
here. The best GPU implementations for each NVIDIAGPU
can be selected from the previous experiment: the Shared
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Fig. 6 Simulations for optimizedMPI code andGPU implementations
for different lattice sizes. The two low-end GPUs, 9400GT and GT210,
are slower than a single core of the FX-8350 CPU. The Titan X GPU
has a similar performance than 64 Opteron cores running an optimized
GoL implementation

v2 code performs well in the 9400GT GPU, and the GPU
Baseline code gives the best performance for the rest of the
GPUs.

These numerical experiments use only those two GPU
implementations to compare their performance against the
optimized CPU Serial and MPI implementation running in
two multicore workstations (FX-8350 and Opteron). The six
GPUs (GeForce 9400GT, GeForce GT210, Tesla C2050,
Tesla K20x, GeForce GTX750Ti and GeForce Titan X)
are compared in Fig. 6 against two multicore CPUs, the
AMD FX-8350 with 8 cores, and a cluster node with
four AMD Opteron 6272 with 16 cores each (64 cores
total).

The two oldest and low-end GPUs, the 9400GT and the
GT210, have a similar performance and cannotmatch the per-
formance of a single core of the FX-8350 CPU. TheGTX750
GPU has a performance close to four cores of the FX-8350
CPU. The C2050 GPU compares well with eight cores of
the FX-8350 CPU, the K20x GPU performs better than 24
CPU cores of the Opteron 6272. Finally, the Titan X GPU
has a performance close to 64 cores of the Opteron cluster
node. Gibson et al. [20] concludes that the GoL is a simple
CA to compute for a GPU, a more complex CA that runs for
many more steps will result in even better speedups. Also, it
is important to consider that the MPI implementation used
here has∼20–∼75%better performance than aBaselineMPI
implementation [29].

The next numerical experiment tests the behavior of the
GPU implementations by increasing the radius of neighbors
from 1 to 5.

3.3.4 Extended neighborhood simulations

The memory access pattern of the GoL CA retrieves the state
of the neighbors of a given cell within a radius of 1 (8 nearest
neighbors, or Moore neighborhood [17]), plus the state of
the cell itself, and this gives that nine values are needed per
cell. In Fermi and post-Fermi architectures, the L1 cache can
be configured to cache global memory access, this will keep
the state of cells most recently used by a thread in the cache
memory.

This implies that using shared memory for a small neigh-
borhood radius could not provide good performance in these
GPUs, a result which was observed in the previous numerical
experiments of Sects. 3.3.1 and 3.3.2, and in previous studies
by Gibson et al. [19] and Maruyama et al. [27]. These tests
show how each GPU implementation behaves as the number
of neighbors increases. The results can be seen in Fig. 7, they
show a steady increase in execution time as the neighborhood
radius is increased.

To carry out this numerical experiment, the device func-
tion count_neighs() was modified. A simple approach to
increase the neighborhood radius is to use for loops to count
the values stored in neighbor cells. This will take two for
loops (columns and rows) and one counter variable, as seen
in the following CUDAC source code (RADIUS is a constant
defined at compile time):

int i i , j j , count=0;
#pragma unroll
for ( i i=−RADIUS; i i <= RADIUS; i i++){
#pragma unroll
for ( j j=−RADIUS; j j <= RADIUS; j j++){
count += lat t ice [my_id + i i ∗ size + j j ] ;
}
}
count −= lat t ice [my_id] ;

This code is small and simple to read, but leads to a consid-
erable performance drop. Using compiler flags to explicitly
use loop unrolling did not improve performance. The source
code for a radius of 1 used in previous numerical experi-
ments did not make use of for loops to count the state of
the neighbors. The for loops in count_neighs() were manu-
ally unrolled for all radius values, from 1 to 5. The speedup
of the manually unrolled for loops implementation against
the for loop implementation is the following: radius 1, 2.2x
faster; radius 2, 2.5x faster; radius 3, 4 and 5, 2.6x faster.
Further analysis of the PTX assembler code is needed to find
the reason why the automatic loop unrolling does not lead
to better performance. For a radius of 5, each cells needs to
access 121 neighbors states. Using the Shared v2 code for this
case nearly matches the performance of the Baseline code.

These results confirm that there is no need to use shared
memory even when increasing the amount of cell states each
thread needs by more than one order of magnitude. Table 4
shows the speedups of the three tested GPUs against the CPU
serial code for each neighborhood radius. The C2050, K20x
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Fig. 7 GoL simulations for different GPU implementations with different neighborhood radius, executed in the C2050, K20x and Titan X GPUs,
for a lattice size of 4096 × 4096 during 1000 steps (Color figure online)

Table 4 Speedups of the GPU baseline implementation against the
CPU serial code, from execution times shown in Fig. 7, with N = 4096
and 1000 steps, executed in three GPUs: Tesla C2050, K20x, and Titan
X

Radius C2050 K20x Titan X

1 6.8 14.2 24.3

2 6.6 12.4 23.1

3 6.5 11.8 22.8

4 5.9 10.7 20.3

5 6.3 11.5 21.1

and Titan XGPUs have an average speedup of∼6x; between
∼10x and ∼14x; and between ∼20x and ∼24x, respec-
tively.

3.3.5 Computational intensive CA

The GoL CA is a memory bound problem, each cell needs
to access nine values from memory and only eight sums are
performed for a neighborhood radius of 1. Gibson et al. [20]
concluded that theGoL is a simpleCAwhich does not exploit
the GPUs compute capabilities, and suggested that a more
complex CA could achieve higher speedups than the GoL
CA. To test the performance of the CA GPU implemen-
tations with a more compute intensive algorithm, a cosine
operation of the sum of the neighbors of a cell was added to
the rule set of the GoL. The cosine operation is one of the
most costly operations that a GPU can perform (see section
“5.4.1. Arithmetic Instructions” of the “CUDA C Program-
ming Guide v7.0” document [13]).

Performance of the best GPU implementations for each of
the NVIDIAGPUs can be seen in Fig. 8. From the numerical
experiment in Sect. 3.3.3 it was seen that the two low end and
oldestGPUs (the 9400GTandGT210GPUs) could notmatch
the performance of one core of the FX-8350 CPU executing
the GoL CA. Here, these two GPUs do improve their per-

formance and obtain a speedup of ∼2x (in single precision,
see Sect. 3.2 for more details) against the Serial CPU imple-
mentation running in the same FX-8350 CPU. The GTX750
achieves up to ∼33x of speedup, the C2050 up to ∼75x, the
K20x up to ∼174x and finally the Titan X up to ∼230x, all
against the serial CPU version running in the FX-8350 CPU.
This compute intensive implementation executed in the two
best GPUs compared with an MPI parallel execution in 8
cores of the AMD FX-8350 CPU gives a speedup ∼ 40x for
the Titan X GPU and ∼ 30x for the K20x GPU (results not
included in Fig. 8). Gibson et al. [20] assume that increasing
the complexity of the CA gives a greater speedup than the
one obtained with the GoL CA can be confirmed thanks to
this numerical experiment. This is in part because the GPU
platform implements the operation (sin/cos/tan) in the ISA
while the CPU needs a table and a series computation.

Two new performance metrics are proposed to com-
pare different GPUs architectures. The first one is seen in
Fig. 9, for the obtained performance (Grid size/wallclock
time) normalized with the amount of transistors present
in each GPU. The performance of each GPU generation
increases compared with the previous generations partly
because of improvements in architecture, but also because of
the increase in the number of transistors. For the case studied
here, the performance obtained per transistor in the C2050
GPU is similar to the one obtained in the K20x GPU. In addi-
tion, the performance per transistor obtained for the GT210
GPU is slightly higher than the one obtained in the 9400GT,
despite the fact that the speedups in Fig. 8 are very similar
in these two GPUs. The increase in performance per transis-
tor is due to the fact that the GT210 has less transistors than
the 9400GT (260M for the GT210 compared with 314M for
the 9400GT) and, therefore, improvements are due to archi-
tectural changes. As it was mentioned before, the GoL is a
model in which the performance is bound bymemory access.
Because of this, in Fig. 10 the second performancemetric can
be seen, where the performance of each GPU is normalized
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Fig. 8 Speedups of the Complex CA simulations for different lattice
sizes, with the best implementation for each GPUs against an optimized
Serial CPU implementation

Fig. 9 Performance for the complex CA normalized with the transis-
tors count present in each GPU

with respect to memory bandwidth. An interesting result can
be seen when comparing the performance of the Titan X and
K20x GPUs: the efficiency per GB of memory bandwidth is
similar between these two GPUs. It can be concluded that,
for this particular metric and for these type of problems, the
efficiency of a K20x GPU is equivalent to a newer GPU like
the Titan X, possibly because the memory width is the same,
and because the performance in Fig. 8 is nearly the same.

3.3.6 Profiling the GPU baseline implementation

Using the NVIDIA profiler (by using nvprof from a Linux
console or nvvp from a GUI) a more detailed view of
the behavior of the implementations can be obtained. A
brief analysis of the GPU Baseline implementation in the
C2050 GPU is detailed here for a lattice size of 1024 ×

Fig. 10 Performance for the complexCAnormalizedwith thememory
bandwidth of each GPU

Table 5 Divergence as a
function of number of steps, for
the three conditional statements
of the GoL rule set

Steps Divergence (%)

10 (99, 98, 97)

102 (99, 99, 99)

103 (32, 43, 54)

104 (21, 46, 34)

105 (21, 34, 45)

1024 during 1000 steps with a block size of 256. Of
the three global kernels (moveKernel(), copy_Rows() and
copy_Cols()), moveKernel() takes ∼98% of the compute
time, leaving the remaining ∼2% for the two kernels that
copy the halo cells. A more in depth analysis could be made
with the NVIDIA profiler to find where the GPU Baseline
implementation can be improved.

There is a divergence in the code path which is inevitable
when the GoL rule set has to be executed. The GoL rules
can be expressed with three if conditional statements, in
which a divergence occur. Table 5 shows divergence for these
three conditional statements. As the CA reaches a steady
state, divergences start to decrease, improving the CA per-
formance. As Gibson et al. [20] stated, when running the
CA for a considerable number of steps, GPU performance
improves. It should be noted that divergence will vary for
different initial conditions.

To quantify performance decrease due to this divergence,
a test was carried out. The same simulation executed previ-
ously to build Table 5 was performed without checking GoL
rules to remove the three divergence paths. Only a 20% time
improvement was seen, which indicates that the divergence
is not the main limiting performance factor.
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Another approach to carry out performance analysis is to
use the Roofline model [61]. This model provides insights
on performance factors affecting CUDA kernels, and would
be implemented in future studies.

3.4 Summary of results

In this section, a summary of the most important numerical
results is presented:

1. Serial CPU code compared with GPU execution:

– TheTitanXGPUhas a speedup of up to∼85x against
a single AMD FX-8350 CPU core.

– A low end and oldGPU such as theNVIDIAGeForce
9400 or the GT210 cannot even match the perfor-
mance of a single core of the same CPU.

2. GPU execution compared with parallel CPU with MPI
execution:

– The Titan X GPU performed similarly to 64 CPU
cores AMD Opteron 6272.

– The K20x GPU performed similarly to 24 CPU cores
of the same AMD processor.

– The Tesla C2050 GPU can be compared with 8 CPU
cores AMD FX-8350.

3. The complex CA is compared between GPU and serial
CPU execution:

– The Titan X reaches up to ∼230x of speedup against
a single AMD FX-8350 CPU core.

– The GeForce 9400 and the GT210 GPUs obtained
∼2x of speedup against the same CPU.

A linear scaling with lattice size (where lattice size is N 2)
was observed in all GPU implementations. The use of shared
memory inGPUs fromFermi and onwards it is not necessary,
at least for a simple access memory pattern like the one GoL
has, even if the neighborhood radius is increased up to 5 (121
neighbors per cell).

One possible measure of performance for a CA could be
given by the number of evaluated cells per second. For the
Titan X, and a size of ∼1 billion cells during 1000 steps,
executing five different simulations resulted in an average
of 5.58e6 cells/s and in the FX-8350 GPU the performance
drops to 0.22e6 cells/s. Another possible measure could
be given by the wall clock time required for a given run,
normalized to the number of cells and number of steps in
that run. This is a general measure for molecular dynam-
ics particle codes, where number of cells is replaced by the
number of particles, and typical values fall around 1–500
microsec/step/particle [24]. In this work, the CA simulations
obtain 0.17 nanosec/step/cell for a simulationwith∼1 billion

cells and 1000 steps, running in the Titan X card, while the
same simulation in the FX-8350 obtains 4.4 nanosec/step/-
cell.

As a summary, the code presented here can be used to effi-
ciently simulate more than a billion cells. This code presents
excellent scaling with system size, and can reach speed-ups
of up tomore than twoorders ofmagnitudewhen compared to
an optimized CPU code. In addition, it can be easily adapted
to follow various CA rules. Given all of this, together with the
open-source nature of the code, the tools presented and ana-
lyzed in this paper can be useful to the scientific community
using CA.

4 Conclusions and future work

This work presents several Cellular Automata (CA) GPU
implementations with high performance in five different
NVIDIA GPU architectures. The work focuses on the GoL
CA, but also tests a more complex case. For the cases stud-
ied here, with a relatively simple memory access pattern, the
use of shared memory in GPUs with architectures Fermi and
newer does not provide any performance improvements. This
is in agreement with results obtained by Gibson et al. [20]
and Topa et al. [54] but only for the Fermi architecture. A
comparison is made of two different shared memory imple-
mentations and a Multicell implementation with respect to
a baseline GPU code. In the oldest architecture studied,
the NVIDIA Tesla G96, shared memory implementations
perform better than the baseline code with global mem-
ory access. On the other hand, in Fermi and post-Fermi
architectures, the baseline code outperforms the rest of the
implementations due to the automatic cache of global mem-
ory access in a L1 cache. Therefore, when access to global
memory follows a simple pattern, as in the Game of Life
CA, it is not necessary to use shared memory to improve
performance. Multicell implementation does not improve
performance either when there is a L1 cache in the GPU.
Two new performance metrics, normalizing execution and
system size with transistor count and with memory band-
width, are also presented, clearly displaying architectural
advances.

There might be additional optimizations which might
improve performance at the cost of making this CA code
significantly more complex. Maruyama et al. [27] concluded
that some optimizations, like shared memory with blocking,
might lead to significant coding time increase for a single
kernel. The latest GPU architectures have improved simpli-
fying memory access patterns, making source code easy to
write and read, and decreasing programming time. The base-
line code presented here is an example of this, being able to
simulate extremely large systems and outperforming classi-
cal optimizations. This implementation would thus be useful
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for applications requiring efficient CAs, in areas as varied as
chemistry and biology.

Future work will explore hybrid multi-GPU/multi-node
[25] implementations of CA able to use all heterogeneous
computing resources available, including CPU cores and
GPUs, which communicate via MPI [1,30]. In addition,
implementing the Roofline model [61] will help to improve
analysis to identify possible optimization pathways to the
CPU/GPU and hybrid implementations.
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