
A Project-based HPC Course for Single-box
Computers

Carlos Bederián
Instituto de Fı́sica Enrique Gaviola

Facultad de Matemática, Astronomı́a, Fı́sica y Computación

CONICET

Av. Medina Allende s/n, Ciudad Universitaria

X5000HUA, Córdoba, Argentina

Email: bc@famaf.unc.edu.ar

Nicolás Wolovick
Facultad de Matemática, Astronomı́a, Fı́sica y Computación

Av. Medina Allende s/n , Ciudad Universitaria

X5000HUA, Córdoba, Argentina

Email: nicolasw@famaf.unc.edu.ar

Abstract—Throughout three iterations and six years we have
developed a project-based course in HPC for single-box com-
puters tailored to science students in general. The course is
based on strong premises: showing that assembly is what actually
runs on machines, dividing parallelism in three dimensions (ILP,
DLP, TLP), and using them incrementally in a single numerical
simulation throughout the course working in interdisciplinary
pairs (CS, non-CS). The final goal is to explore how to use
all the available transistors in a die. Assembly proved a great
tool to show how bare-metal works, an alternative-semantics
approach to programs, and a tool to demystify compiler technol-
ogy. Parallelism is tackled gradually with a clear division into
instruction, data, and thread parallelism. GPUs, through CUDA
in particular, are used as a radically different approach to the
three dimensions of parallelism. Each dimension is explored in
a gradual manner, starting from a sequential toy-yet-interesting
numerical simulation. After using each form of parallelism and
submitting a short report, the experiences are put together
in group discussion unveiling the strengths and weaknesses of
each form of parallelism for each class of numerical simulation.
Although there is a high variance in the students’ background, CS
and non-CS students pair well in project development, generating
understanding and value of the disciplines. The experience proved
successful, with former students producing parallel accelerated
code of their own in their disciplines.

I. INTRODUCTION

After two years of experience as a satellite course for

Thomas Sterling’s LSU course “High Performance Comput-

ing: Model, Methods and Means” –HPCMMM– in 2009

and 2010, and having acquired some experience in interdis-

ciplinary work for numerical code parallelization in CPUs

and GPUs, our GPGPU Computing Group started an under-

graduate and graduate course for science students in Parallel

Computing. Given our previous experience with HPCMMM,

we cropped the contents to all the parallelism that fits in a

single computer, namely Instruction Level Parallelism (ILP),

Data Level Parallelism (DLP) and Thread Level Parallelism

(TLP), since we thought that there was a need to dive slightly

deeper than Thomas’ course but in a three month period.

The course has been given in 2012, 2014 and 2016 [1]. The

first edition had the basic structure, namely all the available

parallelism in a box plus GPU computing, but instead of

having numerical codes to parallelize in all three levels, we had

assignments for each of the four topics consisting of exercise

guides with synthetic problems. In 2014 we switched from

exercise guides to a single numerical simulation that had to

be parallelized incrementally throughout the course, first in

CPU for the three dimensions, and with a CUDA port to

GPUs later. The four assignments were graded in groups of

two, and given the interdisciplinary aspect of our students

(computer scientists, physicists, astronomers, chemists, applied

mathematicians and engineers) we decided to pair CS with

non-CS students with the expectation of repeating the positive

experiences we had previously in our interdisciplinary work

with other sciences in parallelizing numerical code. The move

proved right, and we basically repeated the scheme in 2016,

adding a simple yet interesting summary-class, where all

the groups discussed their outcomes in each of the four

assignments with teachers as moderators.

Computational resources increased in each iteration of the

course. We started with a single chip 6-core Nehalem Intel

Core i7, 24 GiB RAM, with two NVIDIA Tesla C2070 GPUs.

In 2014 we replaced the Fermi cards with two NVIDIA Tesla

K40 but keeping the CPU configuration. In 2016 our Faculty

bought two dual 6-core Haswell Intel Xeon E5-2620 v3 with

128 GiB RAM each, where we fitted two NVIDIA GTX 980

and one Titan X Maxwell cards. The growth in computational

power was enormous, while we had more and more up-to-date

platforms. In 2016 edition we were just one year behind of

current hardware.

Students increased and diversified in each course edition,

from a dozen of mainly CS students in 2012, to forty this

year where non-CS students accounted for 60% of the class.

Non-CS students ranged physics, astronomy, mathematics, en-

gineering (aeronautical, civil, electronic) and chemistry. These

students were all doing the course as graduates, while CS

students were mostly undergraduates taking the course as an

elective.

We had CS undergraduate students with strong knowledge

of compilation processes, programming paradigms, concur-

rency, operating systems, and assembly. However none of them

had had a real need for GFLOPS of computational power

or GiB/s of memory bandwidth so far. On the other hand

2016 Workshop on Education for High-Performance Computing

978-1-5090-3827-5/16 $31.00 © 2016 IEEE

DOI 10.1109/EduHPC.2016.5

1

2016 Workshop on Education for High-Performance Computing

978-1-5090-3827-5/16 $31.00 © 2016 IEEE

DOI 10.1109/EduHPC.2016.5

1

astronomers, civil engineers, etc. were eager to squeeze every

last drop of performance from their computational resources

in order to boost their domain-specific codes in the era of

massively parallel processors, but where being held off by

computer architecture illiteracy. The matchmaking was then

tried as a possible solution.

The authors were in charge of the course throughout the

three editions, but the teaching conditions improved. We went

from having this course as a side-load to the Networks course

in 2012 to teaching this course exclusively in 2016, together

with three alumni from the 2014 edition as ad honorem
teaching assistants.

II. THE THREE DIMENSIONS OF PARALLELISM

We tackled parallelism by exploring each of the three

dimensions available in a single computer. First Instruction

Level Parallelism (ILP) that comes from the superscalar, out-

of-order computational units inside modern CPUs. Second

we addressed the Data Level Parallelism (DLP) available in

their vector units. Finally Thread Level Parallelism (TLP) to

profit the multi-core capabilities of post-Pentium 4 single-chip

CPUs. We also devoted part of the course to GPU computing.

Graphic processing units have ILP, DLP and TLP, however

they are implemented in ways very different from CPUs’.

We used C99 as the language for running examples, mixed

with some FORTRAN to attract science students using this

language.

A. ILP

Although most modern central processing units are super-

scalar and out-of-order, this fact is not very well-known by

scientific code users and writers. The compilation process

including intermediate stages, is one of the main topics of

this part of the course. The final goal is to teach that machine

code is what the bare-metal executes and from that point,

explain that the single stream of instructions is dependency-

analyzed and parallelized on-the-fly by the microprocessor.

Through simple but meaningful programs, we show how clear

and efficient the generated assembler is. Moreover, compiling

to assembly language, typically through the -S compiler flag,

is really handy to show how optimization flags work or don’t.

Students understand the importance of different optimization

flags and play with the idea of compiler as a semantics
preserving transformation, that is also a valuable tool to detect
correctness and performance bugs in the code.

We focus on loop unrolling as the main technique to break

loop data-dependence, and we measure the impact of the ap-

plied optimizations using perf stat to read the instructions

per cycle –IPC– counter. This tool is extremely valuable in

assessing that the code plus compiler flags is doing what we

expect.

Memory hierarchy is also an important topic of this section,

and we stress its parallel aspect. Retrieving lines to cache

is a parallelization to improve memory bandwidth. Latency

aspects of each hierarchy level is also considered, and standard

cache-friendly techniques are explored. We emphasize the role

of microprocessor registers as the only source of non-wait

memory in the hierarchy, a concept that is crucial later in

GPU computing.

Parallelism is presented as a solution to the law of di-

minishing returns in performance per transistor area, and we

used Pollack’s Rule [2] to support this claim. Execution unit

utilization is also covered, showing that symmetric multi-

threading [3] –SMT– is just a cheap way to improve execution

unit utilization through explicit parallelism.

Limits and models of modern microprocessor are also

presented. Floating point peak performance as well as memory

bandwidth are shown for modern chips, and here the roofline

model [4] fits well to tie both aspects. We go further quoting

Bill Dally [5] in what is the current and future problem of HPC

programmers: “All performance is from parallelism, machines
are power limited (efficiency is performance), machines are
communication limited (locality is performance)”. This state-
ment will be repeated throughout the course in each dimension

of CPU and GPU parallelism.

B. DLP

The simple model of Data Level Parallelism or vector

computers is presented through an exploration of the SSE/AVX

Intel instruction set architecture. We show examples of reduc-

tion DLP using vertical and horizontal parallel sums. Here the

important topic of non-associativity of floating point arithmetic

appears. We stress the complexity of the vector ISA “where
operations are either available or not available for particular
data types with little rhyme or reason” [6].
In this sea of diversity, compiler autovectorization is pre-

sented more as a platform-independent code generator than an

optimizer, since different techniques (loop peeling, memory

alignment, etc.) need to be applied in order to meet the

requirements of the compiler to use this part of the ISA.

Autovectorized code is also vector-width independent, which

is important for the current transition from 128-bit SSE vectors

to the wider vectors in AVX and AVX-512.

We specially show how to write code where the control

diverges between vector lanes using comparison, and masked

or blended instructions. This will be important later on for

GPU computing.

One class is devoted to helping the compiler autovector-

izer [7], and another class is dedicated to showing how to

write a stencil code similar to heat using DLP through Intel

intrinsics [8] for SSE/AVX.

We use sgemm computation to demonstrate how efficient a

native library can be implementing a seemingly naive problem

compared to the code that people usually write, even when

using good HPC practices.

C. TLP

Thread Level Parallelism is presented as the final dimension

of parallelism, covering asynchronous cores of computation.

The MIMD model is given as well as the main aspects of

shared and coherent memory hierarchy. The examples are

coded using OpenMP [9] directives and library.

22

In this part we also use assembly generation to show the se-

mantics of OpenMP constructs, as well as intermediates stages

of the gcc compiler using -fdump-tree-omplower and

-fdump-tree-ompexp1. The tool is useful to disambiguate
the natural language specification of the OpenMP standard.

To better understand scaling and efficiency concepts, some

classical examples like sgemv and sgemm from BLAS level

2 and 3 are reviewed. We also compare with optimized BLAS

libraries to stress the fact that it is very difficult to achieve that

level of efficiency with respect to theoretical FLOPS peak.

We execute the code in different multicore platforms, rang-

ing from old Opterons to recent Haswell architectures. These

examples are the basis to discover some ccNUMA perfor-

mance problems, that are exposed using numactl to control

affinity and numatop to check local/remote memory access

for running code. We also explore compiler autoparallelization.

D. ILP, DLP, TLP from a GPU perspective

Once the main concepts of a modern CPU architecture have

been presented and practiced, the learning curve for GPU

computing is somehow leveraged. We borrow concepts like

vector units, the memory wall problem, MIMD, ILP, divergent

lanes, but in a new perspective given by the modern post-G80

NVIDIA GPU architectures. Memory latency hiding through

over-subscription of shaders fits nicely with n-way SMT.

Divergent threads performance penalty is explained using the

previous divergent lanes vector examples. The students can

understand the GPU as a many-core computing unit (shaders),

each comprising n-way SMT (block warps) and wide vector

units (warp) with special hardware for handling divergent lanes

transparently.

What differs is memory hierarchy, and this is one aspect we

emphasize a lot showing the inverted memory hierarchy pyra-

mid [10], and a cache that is only for spatial locality. Broadcast

memory, and the shared memory as user-managed cache, are

also shown as peculiarities of this memory architecture with

respect to the CPU counterpart.

Since there is no common ancestor for CPUs and GPUs,

we run through the historical development of GPUs. This

helps to understand the idiosyncrasy behind many graphics

processing units implementation decisions. This also helps to

predict some aspects of the GPUs as texture interpolation ISA

instructions or native computation of sin, cos also in the ISA

which are not present in the CPU counterparts.

We show the development of GPU architectures (Fermi,

Kepler, Maxwell) in a similar way to what we did in CPU

architectures (Nehalem, Sandy Bridge, Haswell). In the current

edition of the course, all the examples have been run on Fermi,

Kepler and Maxwell and this accumulation of performance

profiles help to portray each architecture.

We continued exposing what is really run in the hardware,

the SASS assembly, this time mediated by the intermediate

PTX assembly. Again this was very useful to show improve-

ments in the ISA that are very important to performance,

1Thanks to Diego Novillo for pointing this out.

for example compiler generating ldg instructions for cached

global access and the Maxwell shared atomics. We also point

out instructions without CPU counterparts like tex2D and

cos that are originally tailored to the graphics pipeline.

The programming language and library is CUDA [11]. We

cover standard algorithmic patterns like maps and reductions

with special emphasis on how to profit from the computing

and memory architecture. We display in a rather simple form,

what was quoted from Bill Dally, locality is the main source of

performance and by using the three level hierarchy (registers,

shared and global) we show a reduction example code where

an enormous boost in performance is achieved. Again sgemm
computation is the bar to measure how hard is to achieve peak

performance, and that native libraries are nearly impossible to

beat in terms of efficiency. We end with a rather complex but

useful parallelization, namely a scan reduction shaped by the

three level memory hierarchy.

III. PROJECTS

Most of the codes are in C, just tiny_manna and

tiny_sph are in a proper subset of C++. All of them are

simple enough so that the main source of computation easily

fits in a page of code. The projects where chosen more by

professors’ familiarity with the numeric code than any other

criteria, in order to effectively guide students throughout the

parallelization and optimization process.

The numerical simulations are:

• endoh1 referenced as the “Most complex ASCII fluid

dynamics” and given an honorable mention at IOCCC’12

is a smoothed-particle hydrodynamics –SPH– fluid sim-

ulator for the console. The starting point for this project

is based on the deobfuscated version of the IOCCC

submission.

• heat this classical code solves the 2D heat equation

numerically using a stencil of 4 neighbors for a fixed

temperature boundary condition and a source point. The

initial project code iterates a diffusion step until either a

certain global error, or maximum number of iterations is

reached. The output is given as a ppm image. We have

used this project in two GPU schools in the past.

• hornschunck the starting point is the source code

available from [12] for the classical version of the Horn-

Schunck optical flow algorithm [13]. The program takes

the maximum number of iterations and α parameter and

two images, computing the optical flow flo output that is
converted to png for easy visualization. The project was

proposed and successfully parallelized by a 2014 alumni

doing his PhD in Computer Vision and Robotics.

• navierstokes we start from the classical paper [14]

and source code for this approximate solution to the

Navier-Stokes fluid equations, with fixed inputs in order

to simplify debugging. Although this is one of the most

complex numerical codes, this is balanced with a nicely

written related paper and code. One of the course pro-

fessors parallelized in CPU and GPU a magnetic hydro-

33

dynamic –MHD– code, so there was previous experience

with this kind of numerical code.

• scan2d built on previous experience on GPU Computer

Vision algorithms [15] we provide a sequential version

of the Integral Image algorithm. The code is really small,

but its strong sequential character transforms this problem

in one of the hardest. Its difficulty is leveraged with

in-class examples of reductions and scans, that are the

main ingredients of this code. The project is provided

with a single test case that was carefully chosen to cover

common bugs.

• spmv sparse solvers are used in many fields including

computational fluid dynamics and probabilistic model

checking, with Sparse Matrix-Vector multiplications tak-

ing up most of the computation. Built on previous expe-

rience [16], [17], [18], we gave a page-long sequential

algorithm for the Compressed Sparse Row –CSR– rep-

resentation, and a set of test cases. Similar to scan2d,
it is extremely simple, but the non-contiguous memory

access and load balancing problems put a high difficulty

bar on this code.

• tiny_ising the 2D Ising model is a stochastic pro-

gram to simulate a ferromagnetic system. The grid holds

spin values in {−1, 1 } and the dynamics of the system

change spins in typewriter order following the Metropolis

Algorithm. The code combines massive use of random

number generators, 4-neighbor stencils and the compu-

tation of global grid energy. This example was built on

previous experience on the Potts model [19]. The results

are not deterministic, but given the stochastic nature

of the code, correctness can be checked by averaging

repeated runs of the parallelized code against sequential

code results.

• tiny_manna the Manna model [20] is for a two dimen-

sion cylinder-like sandpile represented by a vector where

each item contains the pile height at that point. This is

known as one-dimension Manna model. The dynamics

for each site spreads the sand grains stochastically to

the left and right neighbors if the pile is greater than

one. This process repeats for a fixed number of iterations

or until it reaches a steady state, with the number of

active grains being printed in each iteration. This code

was communicated and parallelized by Alejandro Kolton,

a physics colleague working in the Centro Atómico

Bariloche.

• tiny_mc this is a 2D numerical simulation of a 1

W point source heating in infinite isotropic scattering

medium [21]. Previous experience in this code was gained

in a lab session run by the authors in a GPU school. The

simulation is a typical Monte-Carlo code using lots of

RNG and very little memory to accumulate the shells

of energy for the photon scattering. All the photons

are independent of each other. Although the result is

stochastic, the implementations could be tested against

the serial version by averaging.

• tiny_sph this code implements a smoothed particle hy-

drodynamics (SPH) approximation for interactive/game

effects [22] with an attractive OpenGL visualization. All

particles can be independently updated and the interaction

is local. Correctness checking is hard since it just displays

a visual simulation. This numerical code was the latest

addition of the course.

In Table I we summarize main aspects of each numerical

algorithm. The numerical intensity [23] is defined as the

FLOPS to memory access ratio where N is the problem

size. A numerical intensity of 1 means one floating point

operation per memory access and this describes a memory-

bound problem, while the other end of the spectrum is N
showing a FLOPS-bound problem. Data dependence is the the

amount of parallelism available in the numerical simulation.

Usually the numerical codes on a grid have two phases, one

updating values and the other computing some global quantity.

The first part can be parallelized using the checkerboard

technique [19] for stencils of four neighbors. We are not trying

to be precise but we would rather give an idea of how hard

parallelization and memory optimization is.

IV. PROJECT RESULTS

Although we did not record quantitative information on

the outcome of the last two editions of the project (2012

edition was not project-based), we obtained interesting general

information on what happened.

The ILP lab was mostly a warm-up to get acquainted

with the code and try different compiler switches. As ILP

is hard to program explicitly, students were not expected to

unroll loops by hand or do shuffle expressions to increase

the Haswell eight port utilization. Vanilla numerical codes

started with no optimization flag at all, so the message was

clear: there is a lot to gain by just adding -O1. Depending
on the code, students could increase performance with a base

of 2x. Another important lesson learned was system-noise and

repeated executions of measurements to obtain a stable mean

and the variance to quantify the quality of the measurement.

Perhaps this is well-known for science students in general,

but our CS students have not been exposed to experimental

science. The main outcome of this part was a lin-log graph

plotting normalized computation time with respect to problem

size vs. problem size. The students quickly understood whether

their code was memory bound if there was a normalized time

increase as the problem size grows.

For DLP the picture changed, since students had to decide

where to invest their time budget: rewriting the code using

intrinsics or trying to help the compiler autovectorizer [7]. In

2014 and 2016, we have seen both approaches with a good

degree of success. In general, groups that chose AVX intrinsics

obtained good speedups of at least 2x, while autovectorization

was slightly worse. It was remarkable that although vector

intrinsics were really hard to code, once the code was ready,

it was correct and fast. Below we will compare this to TLP.

Pure CPU-bound codes, namely tiny_mc started to excel,

gaining a linear 8x after manual vectorization on a 8-float-

44

TABLE I
SUMMARY OF THE NUMERICAL CODES

Code Numerical Intensity Data Dependence Observations
endoh1 ∼4 Sequential/checkerboard update Complex numbers, hard to read source
heat ∼4 Fully parallel update, reduction Simple

hornschunck ∼4 Fully parallel
navierstokes ∼4 Sequential/checkerboard update, reduction Difficult to test for correctness

scan2d 1 Reduction Hard to beat sequential, needs two passes in parallel
spmv 1 Reduction Non-contiguous memory access, load balancing

tiny_ising ∼4 Sequential/checkerboard update, reduction RNG
tiny_manna 1 Fully parallel RNG

tiny_mc N Fully parallel update, reduction RNG
tiny_sph ∼m, m�N Fully parallel update Hard to modify code, non-contiguous memory access

wide vector unit. For the rest, the gain was also important,

making the effort valuable.

TLP had a lot to say from the results. The summary is

that memory system works as a bottleneck in symmetric

multiprocessing systems. While the tiny_mc photon code

had 12x for 12 cores, stencil and reduction codes ran into a lot

of trouble trying to achieve a speedup of more than 6x with

12 cores. A group in 2014 was so frustrated that they used

likwid to finally assess that they had reached the Stream

Benchmark [24] limit for the memory bandwidth. Here the

main outcome was efficiency graph with respect to problem

size for increased number of cores. Comparing DLP to TLP,

the OpenMP decoration were easy to write but performance

tuning was a difficult task.

Finally GPU using CUDA and running on Maxwell ar-

chitecture lied somewhere between vectorization and mul-

ticore parallelization with respect to difficulty and accel-

eration. The teachers’ suggested strategy was a step by

step GPU port of functions, assessing correctness in each

transformation, while profiting the unified memory through

cudaMallocManaged() to lessen the code bloat on ex-

plicit memory transfer between host and device. The strategy

was useful and the professor’s fears of groups not being able

to code in CUDA quickly vanished. Every group obtained a

correct and a performing CUDA code. Students feelings about

CUDA where positive, and there was consensus that GPU

programming was easier than vector intrinsics programming.

From the performance aspect of E5-2620v3 vs. GTX 980, that

have comparable amount of transistors, there was a mix of

GPU outperforming CPU and vice-versa. The main outcome

of the lab was a log-lin graph of normalized performance vs.

model size, and here students quickly saw that for GPUs the

more data the better, while for CPUs it was the other way

round. Through experimentation the students found that CPUs

are better suited for latency computing while GPUs are suited

for throughput computing.

Three projects were not chosen and we think this record

of failure is important to understand why these projects did

not work. One of them was endoh1. Although it has a

fancy visualization and is a very interesting piece of software,

nobody picked it in either of the two project-based versions

of the course. We suppose that the still complex shape of

the deobfuscated code and the use of the complex datatype

precluded its election. The second was tiny_manna, and the
reason may be that professors did not have direct experience

with the code and there was no fancy visualization, therefore

no student was attracted. The third one was tiny_sph. The
main reason was not code complexity, but code inflexibility

since it was quite difficult to increase the number of particles.

Besides, the code was full of non-contiguous memory access

by using array of pointers as its main data structure, and

throughout the course we used simple contiguous memory

data structures such as array-of-structures –AoS– or structure-

of-arrays –SoA–. The tiny_sph code should be completely

refactored to use it in upcoming editions of the course.

Final projects for graduate students showed the impact of

the course. -ToDo- Parallelizing R, Carde doing sparse matrix

recommendation systems, matlab to C to OpenMP code Caro

Daza, etc. Revisar los repos.

V. CONCLUSIONS

We based our course in our previous experience from the

Thomas Sterling LSU HPCMMM course, and we developed

a different flavor specifically tailored to use all available com-

puting power in a single computer, excluding message-passing

parallelism in order to be deeper in the topics discussion. Our

course differs from traditional HPC courses in Argentina, in

that we put the effective use of as many transistors in the die

area as possible as a guiding principle.

The course interest increased and diversified throughout its

editions. From a dozen of students in 2012, it doubled in

2014 and in 2016 we had an audience of forty students. The

main source of students come from previous year’s student

recommendation, and from people knowing first hand that

the instructors had real and successful experience parallelizing

codes.

Given the fact that the course is for CS students finishing

their undergraduate studies and science graduate students, it

represents a remarkable amount for local standards.

Diversity was not a problem but a solution. The CS, non-CS

pairing proved useful, no only to match the science FLOPS

consumers with the people who know the platforms, but also

to raise the respect of the domain knowledge in both fields.

CS students understood that it is not just a matter of blind

optimization and parallelization, sometimes the key is problem

domain knowledge. The other way round the non-CS students

55

learned a lot of computational concepts and computational

filigree that are key to deliver an incredible boost in their

codes.

In terms of technologies and parallelism teaching we found

the following. Effective use of CPUs is no less difficult

than the effective use of GPUs, contrary to students previous

conceptions. Explicit DLP is hard to code for but performance

results are great, in comparison with directive-based TLP that

is simple code decoration and a lot of memory profiling to get

a decent scalability afterwards. It is easier to achieve more

efficiency with respect to peak performance in GPU than in

CPU. For particular problems like BLAS or FFT, there is no

other choice but to use native optimized libraries.

One key factor for this highly technological course success

was having up-to-date hardware. In early 2016 we had the

most powerful single-box computer of Argentine Universities

for students to learn parallelism.

Finally we are generating demand for HPC in the scientific

community and knowledge in HPC technology in the CS

students. The match-making is a long term investment to

seed future interdisciplinary work in the HPC area within our

University and increase the demand of supercomputing.

ACKNOWLEDGMENTS

We want to acknowledge NSF/TCPP curriculum initiative

on Parallel and Distributed Computing for the 2012 Award.

NVIDIA for the continuous GPU Education Center and GPU

Research Center awards throughout the three editions in-

cluding lots of cards. Special thanks to Chandra Cheij, the

Academic Research Program Manager at NVIDIA. We also

like to thank to CCAD-UNC for the Mendieta Cluster to

conduct experiments and LANAIS Group FaMAF-UNC for

the servers used in 2012, 2014. PROMINF and PAMEG

programs are also in the thank list since they allowed our

Faculty to buy two high-end servers in 2016. Thanks to the

anonymous referees for suggestions and comments. Finally we

would like to thank alumni Carlos Budde, Dionisio Alonso

and Leandro Perona who not only provided lots of feedback

in 2014, but also teaching assistance to the course in 2016.

REFERENCES

[1] C. Bederián and N. Wolovick, “Computación paralela,”
2016. [Online]. Available: http://www.cs.famaf.unc.edu.ar/∼nicolasw/
Docencia/CP/2016

[2] M. Själander, M. Martonosi, and S. Kaxiras, Power-Efficient Computer
Architectures: Recent Advances. Synthesis Lectures on Computer
Architecture, 2014.

[3] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
5th ed. Morgan Kaufmann, 2013.

[4] S. Williams, A. Waterman, and D. A. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[5] W. Dally, “Efficiency and programmability: Enablers for exascale,”
SC13, 2013.

[6] F. Giesen, “SSE: mind the gap!” 2016. [Online]. Available:
https://fgiesen.wordpress.com/2016/04/03/sse-mind-the-gap

[7] LocklessInc, “Auto-vectorization with gcc 4.7,” 2012. [Online].
Available: http://locklessinc.com/articles/vectorize

[8] Intel, “Intel intrinsics guide,” 2016. [Online]. Available: https:
//software.intel.com/sites/landingpage/IntrinsicsGuide

[9] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming, ser. Scientific and Engineering
Computation Series. MIT Press, 2008.

[10] V. Volkov, “Better performance at lower occupancy,” GTC’10, 2010.
[11] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel

Processors - A Hands-on Approach, 2nd ed. Morgan Kaufmann, 2013.
[12] E. Meinhardt-Llopis, J. S. Pérez, and D. Kondermann, “Horn-Schunck

optical flow with a multi-scale strategy,” IPOL Journal, vol. 3, pp. 151–
172, 2013.

[13] B. K. P. Horn and B. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 59, no. 1-2, pp. 81–87, Feb. 1993.

[14] J. Stam, “Real-time fluid dynamics for games,” GDC’03, 2003.
[15] J. Atala, C. Bederián, A. Bordese, G. Ingaramo, F. Gaich, J. Medina,

M. Rosetti, J. Sánchez, M. Tealdi, and N. Wolovick, “Real-time FullHD
tracking-learning-detection on a 2-SMX GPU,” GTC’15, 2015.

[16] M. Tealdi, “Paralelización de algoritmos para verificación simbólica de
modelos probabilı́sticos,” Master’s thesis, FaMAF, Universidad Nacional
de Córdoba, 2013.

[17] G. Ingaramo, “Implementación del algoritmo Gauss-Seidel en CUDA
para la verificación simbólica de modelos probabilı́sticos,” Master’s
thesis, FaMAF, Universidad Nacional de Córdoba, 2013.

[18] R. S. Galeote, “Análisis de las arquitecturas gráficas emergentes medi-
ante códigos de matrices dispersas,” Master’s thesis, Escuela Técnica
Superior de Ingenierı́a Informática, Universidad de Málaga, 2013.

[19] E. E. Ferrero, J. P. D. Francesco, N. Wolovick, and S. A. Cannas, “q-
state potts model metastability study using optimized GPU-based Monte
Carlo algorithms,” Computer Physics Communications, vol. 183, no. 8,
pp. 1578–1587, 2012.

[20] S. S. Manna, “Critical exponents of the sand pile models in two
dimensions,” Physica A, vol. 179, no. 2, pp. 249–268, 1991.

[21] S. Prahl, “Drop-dead simple Monte Carlo codes,” 2016. [Online].
Available: http://omlc.org/software/mc

[22] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Eurographics/SIGGRAPH Symposium on
Computer Animation, D. Breen and M. Lin, Eds., 2003, pp. 154–159.

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 5th ed. Morgan Kaufmann, 2012.

[24] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high per-
formance computers,” University of Virginia, Charlottesville, Virginia,
Tech. Rep., 1991-2007.

66

