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Universidad Nacional de Córdoba, Fa.M.A.F. - CONICET,
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Abstract

An interactive system is a system that allows communication with the users. This communi-
cation is modeled through input and output actions. Input actions are controllable by a user of
the system, while output actions are controllable by the system. Standard semantics for sequen-
tial system [1, 2] are not suitable in this context because they do not distinguish between the
different kinds of actions. Applying a similar approach to the one used in [2] we define seman-
tics for interactive systems. In this setting, a particular semantic is associated with a notion of
observability. These notions of observability are used as parameters of a general definition of
non-interference. We show that some previous versions of the non-interference property based
on traces semantic, weak bisimulation and refinement, are actually instances of the observability-
based non-interference property presented here. Moreover, this allows us to show some results
in a general way and to provide a better understanding of the security properties.

Keywords: process theory, semantic, interactive systems, interface automata, non interference, secure information
flow, refinement, composition.

1 Introduction

An interactive system is a system that allows communication with the users. Usually, to carry out this communication,
the system provides an interface that is used by them. Through the interface, the user sends messages to the system
and receives messages from it. Interface Automata (IA) [3, 4, 5] is a light-weight formalism that captures the temporal
aspects of interactive system interfaces. In this formalism, the messages sent by the user are represented as input
actions, while the received messages are represented as output actions.

Interface structure for security (ISS) [6] is a variant of IA, where there are two different types of visible actions.
One type carries public or low confidential information and the other carries private or high confidential information.
For simplicity, we call them low and high actions, respectively. Low actions are intended to be accessed by any
user while high actions can only be accessed by those users having the appropriate clearance. In this context the
desired requirement is the so-called non-interference property [7]. In the setting of ISS, bisimulation based notion
of non-interference has been considered, more precisely, the so called BSNNI and BNNI properties [8]. Informally,
these properties state that users with no appropriate permission cannot deduce any kind of confidential information
or activity by only interacting through low actions. Since it is expected that a low-level user cannot distinguish
the occurrence of high actions, the system has to behave the same when high actions are not performed or when high
actions are considered as hidden actions. To formalize the idea of “behave the same”, the concept of weak bisimulation
is used.

In [9] it was argued that the BSNNI/BNNI properties are not quite appropriate to formalize the concept of secure
interface. To illustrate this point the following two examples are presented: in the first one (Figure 1), we get that the
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system does not satisfy neither BNNI nor BSNNI but we show that it could be considered secure since no information
is actually revealed to low users. The main problem is the way in which weak bisimulation relates output transitions.
On the other hand, the second example (Figure 2) shows that weak bisimulation based security properties may fail to
detect an information leakage through input transitions.
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Figure 1: Credit approval process of an on-line banking service

Figure 1 models a credit approval process of an on-line banking service using an ISS. As usual, outputs are suffixed
by ! and inputs by ?. At the initial state s1, a client can request a credit (cred req?). The credit approval process can
be carried on locally or by delegating it to an external component. This decision is modeled by a non deterministic
choice. If it is locally processed (loc ctrl!), an affirmative or negative response is given to the client (yes!/no!) and the
process returns to the initial state. On the other hand, if the decision is delegated (ext ctrl!), the process waits until it
receives a notification that the control is finished (done?), returning then to the initial state. Besides, in the initial state,
an administrator can configure the system to do only local control (only loc?). This action is high and is not visible
for low users. (We underline private/high actions.) In state s5, the administrator can configure the system to return to
the original configuration using action only loc off?.

The Credit Request does not satisfy the BSNNI property (nor the BNNI property) and hence it is considered
insecure in this setting. The system behaves differently depending on whether the private action only loc? is performed
or not. If only loc? is not executed, after action cred req?, it is possible to execute action ext ctrl!. This behavior is
not possible after the action only loc?. Notice nevertheless that output actions are not visible for the user until they are
executed. Then, from a low user perspective, the system behavior does not seem to change: the same input is accepted
at states s1 and s5, and then, the low user cannot distinguish whether the observation of loc ctrl! is a consequence of
the unique option (at state s6) or it is just an invariable decision of the Credit Request Process (at state s2). Hence we
expect the system to be classified as secure by the formalism.

We consider this example to be secure because a user does not know exactly what output action can be executed by
an interface if he has no knowledge of the current state, he can observe the output actions only when they are executed.

On the other hand, a user may try to guess the behavior of the system by performing input actions: wrong inputs
will be rejected/ignored; otherwise, they will be accepted. Based on this fact, the following example shows that weak
bisimulation based non-interference may fail to detect an information leakage.
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Figure 2: External Control Process in an on-line banking service

Figure 2 depicts the component that executes the external control. In the initial state, the interface waits for input
ext ctrl? from the Credit Request Process. After this stimulus, a response about the credit request is given. If the
credit is denied (ext no!), the client can either ask for a decision review (review?) or accept the decision (accept?).
In both cases, the decision is processed by the component (process;). This action is internal and is not visible by
users (hidden/internal action are suffixed by semicolon). The process finishes with action done! returning to the initial
state. If the credit is approved (ext yes!), the client can accept or decline the credit (accept?/decline?). The decision
is processed, the component informs that the task is done and it returns to the initial state. As in the first example,

2



CLEI ELECTRONIC JOURNAL, VOLUME 14, NUMBER 3, PAPER 6, DECEMBER 2011

the behavior of the component can be modified by an administrator, which can configure the interface to reject all
credit requests (reject all?). For this reason, if reject all? is received at the initial state, after an input action ext ctrl?,
the process can only execute action ext no!. At this point, clients are not allowed to ask for a decision review. Then,
at state t11, the interface accepts only input action accept?. However, based on the client records, the review may be

enabled; this is represented with the internal transition t11
allow;
−−−−→ t13, notice state t13 accepts both inputs actions accept?

and review?. In any case, after the client response, the result is processed, the component informs that the task is done,
and the process is restarted.

Suppose that the bank requires that the client cannot detect whether the external process is denying all credit
request. Since a low user cannot see the output action until they are executed, he cannot differentiate between the

executions t1
ext ctrl?
−−−−−−→ t2

ext no!
−−−−−→ t3 and t9

ext ctrl?
−−−−−−→ t10

ext no!
−−−−−→ t11. If we compare states t3 and t11 under weak bisimulation,

both state can execute the same visible transitions and no security problem is detected. Notice that at state t11, the

process cannot respond immediately to a review? input, but it can execute t11
allow;
−−−−→ t13

review?
−−−−−→ t14 (recall allow; is an

internal action). In fact, low users can distinguish state t3 from t11: testing the interface at state t11, the low user can
find out that input action review? is not enabled, while at t3 it is. Hence, we consider that the interface is not secure.

These observations are based on the fact that input and output actions are conceptually very different. Input
actions are controllable by the user while output actions are controllable by the system. Therefore, some behavior
one would expect from input actions may be inappropriate for outputs and vice-versa. For instance, the assumption
that “wrong inputs will be rejected/ignored; otherwise, they will be accepted” in the second example above, makes no
sense if applied to outputs because the malicious user is interested in collecting all possible information rather than in
rejecting it.

In [1] and [2], a deep study about semantic for sequential system is done, but they do not take in account systems
where both kinds of actions coexist. In their setting all actions are controlled by one entity: the user or the system.
For example, in Fail Trace Semantic a user executes (input) actions until one action is rejected by the system, in this
case the user has the control of which action is executed. A different case is Trace Semantic where the system has
the control of the actions and the user can only observe the executions of the system. Also in stronger semantics, for
example with global testing, the control belongs to one entity. For instance, Weak Bisimulation equivalence is also
called observational equivalence and its intuitive notion is “two system are observational equivalence if they cannot be
distinguished by an observer”, ie the user observes and the system executes (controls) the actions. Notice the subtlety
in this case: global testing allows the user to force the system to execute all possible executions but, which actions can
be executed in each state is controlled/defined by the system.

In this work we define semantics for systems where both coexist, actions controlled by the user (input actions) and
actions controlled by the system (output actions). We have used an approach similar to the one used in [2]. First we
define types of observations, an information record that can be performed by a user. Second, we define a notion of
observability as a set of types of observations. Each notion of observability is a particular semantic. This approach is
simple, elegant and allows to be exhaustive: when the types of observation and notion of observability are defined one
has all the possible semantics that could be defined.

These new semantics are suitable to study secure information flow properties over ISS. Moreover, the definition
of non-interference presented in this work has as parameter a notion of observability. This generalization through
types of observations provides a framework to prove generic theorems that extends to families of security properties.
In addition, the approach subsumes previous definitions of non-interference for ISS, in particular the one based on
traces [9], the one based on weak bisimulation [6] and the one based on refinement [9].

We also focus our attention in non-interference based on refinement. We give sufficient and simple conditions to
ensure compositionality. We also provide two algorithms. The first one determines if an ISS satisfies the refinement-
based non-interference property. The second one, determines if an ISS can be made secure by controlling some input
actions, and if so, synthesizes the secure ISS. Both algorithms are polynomial in the number of states of the ISS under
study. These results are relevant because they could be adapted to other instances of non interference based on notion
of observability.

This paper is an extension of [9]. In [9] we introduce non-interference based on refinement to resolve some
shortcomings in the non-interference based on weak bisimulation properties. The approach based on notions of ob-
servability shows that the shortcomings do not exist because the properties should be considered in different contexts.
We explain this in the last section of the paper.

Organization of the paper. In section 2 we recall definitions of IA, composition and ISS. In section 3 we define the
types of observations, notion of observability and the set of observable behaviors of an IA. In section 4 we present the
notion of non-interference based on notion of observability. We show that the approach subsumes previous definition
of non-interference for ISS and we proof some general properties of non-interference. In section 5 we review the
definitions of non-interference based on refinement, and we show that these definitions also are subsumed by the new
approach. We study compositionality in this setting and define two algorithms: one to check whether an interface
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satisfies the property and the another to derive a secure interface from a given (non-secure) interface by controlling
inputs actions. Section 6 concludes the paper.

2 Interfaces Automata and Interface Structure for Security

In the following, we define Interface Automata (IA) [3, 4] and Interface Structure for Security (ISS) [6], and introduce
some notations.

2.1 Interfaces Automata

Definition 1. An Interface Automaton (IA) is a tuple S = 〈Q, q0, AI , AO, AH ,−→〉 where: (i) Q is a finite set of states
with q0 ∈ Q being the initial state; (ii) AI , AO, and AH are the (pairwise disjoint) finite sets of input, output, and
hidden actions, respectively, with A = AI ∪ AO ∪ AH; and (iii) −→ ⊆ Q× A×Q is the transition relation that is required
to be finite and input deterministic (i.e. (q, a, q1), (q, a, q2) ∈ δ implies q1 = q2 for all a ∈ AI and q, q1, q2 ∈ Q). In
general, we denote QS , AI

S ,→S , etc. to indicate that they are the set of states, input actions, transitions, etc. of the IA
S .

As usual, we denote q
a
−→ q′ whenever (q, a, q′) ∈ −→, q

a
−→ if there is q′ s.t. q

a
−→ q′, and q

a
−→6 if this is not the case.

An execution of S is a finite sequence q0 a0 q1 a1 . . . qn s.t. qi ∈ Q, ai ∈ A and qi
ai
−→ qi+1 for 0 ≤ i < n. An execution

is autonomous if all their actions are output or hidden (the execution does not need stimulus from the environment to
run). If there is an autonomous execution from q to q′ and all action are hidden, we write q

ε
⇒ q′. Notice this includes

case q = q′. We write q
a
⇒ q′ if there are q1 and q2 s.t. q

ε
⇒ q1

a
−→ q2

ε
⇒ q′. Moreover q

â
⇒ q′ denotes q

a
⇒ q′ or

a ∈ AH and q = q′. We write q
ε
⇒

a
−→ if there is q′ s.t. q

ε
⇒ q′ and q′

a
−→. A trace from q0 is a sequence of visible actions

a0, a1 · · · such that there are states q1, q2, · · · such that q0
a0
⇒ q1

a1
⇒ q2 · · · is an execution. The set of traces of an IA S ,

notation Traces(S ), is the set of all traces from the initial state of S .

Composition

Composition of two IA is only defined if their actions are disjoint except when input actions of one of the IA coincide
with some of the output actions of the other. Such actions are intended to synchronize in a communication.

Definition 2. Let S and T be two IA, and let shared(S ,T ) = (AS ∩ AT ) be the set of shared actions. We say that S and
T are composable whenever shared(S ,T ) = (AI

S ∩ AO
T )∪ (AO

S ∩ AI
T ). Two ISS S = 〈S , Ah

S , A
l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 are

composable if S and T are composable.

The product of two composable IA S and T is defined pretty much as CSP parallel composition: (i) the state
space of the product is the product of the set of states of the components, (ii) only shared actions can synchronize, i.e.,
both component should perform a transition with the same synchronizing label (one input, and the other output), and
(iii) transitions with non-shared actions are interleaved. Besides, shared actions are hidden in the product.

Definition 3. Let S and T be composable IA. The product S ⊗ T is the interface automaton defined by:
• QS⊗T = QS × QT with q0

S⊗T = (q0
S , q

0
T );

• AI
S⊗T = AI

S ∪ AI
T − shared(S ,T ), AO

S⊗T = AO
S ∪ AO

T − shared(S ,T ), and AH
S⊗T = AH

S ∪ AH
T ∪ shared(S ,T ); and

• (qS , qT )
a
−→S⊗T (q′S , q

′
T ) if any of the following holds:

- a ∈ AS − shared(S ,T ), qS
a
−→S q′S , and qT = q′T ;

- a ∈ AT − shared(S ,T ), qT
a
−→S q′T , and qS = q′S ;

- a ∈ shared(S ,T ), qS
a
−→S q′S , and qT

a
−→T q′T .

There may be reachable states on S ⊗ T for which one of the components, say S , may produce an output shared
action that the other is not ready to accept (i.e., its corresponding input is not available at the current state). Then S
violates the input assumption of T and this is not acceptable. States like these are called error states.

Definition 4. Let S and T be composable IA. A product state (qS , qT ) ∈ QS⊗T is an error state if there is an action
a ∈ shared(S ,T ) s.t. either a ∈ AO

S , qS
a
−→S and qT

a
−→6 T , or a ∈ AO

T , qT
a
−→T and qS

a
−→6 S .

If the product S ⊗ T does not contain any reachable error state, then each component satisfies the interface of the
other (i.e., the input assumptions) and thus are compatible. Instead, the presence of a reachable error state is evidence
that one component is violating the interface of the other. This may not be a major problem as long as the environment
is able to restrain of producing an output (an input to S ⊗ T ) that leads the product to the error state. Of course, it
may be the case that S ⊗ T does not provide any possible input to the environment and reaches autonomously (i.e., via
output or hidden actions) an error state. In such a case we say that S ⊗ T is incompatible.
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Definition 5. Let S and T be composable IA and let S ⊗ T be its product. A state (qS , qT ) ∈ QS⊗T is an incompatible
state if there is an error state reachable from (qS , qT ) through an autonomous execution. If a state is not incompatible,
it is compatible. If the initial state of S ⊗ T is compatible, then S and T are compatible.

Finally, if two IA are compatible, it is possible to define the interface for the resulting composition. Such interface
is the result of pruning all input transitions of the product that lead to incompatible states i.e. states from which an
error state can be autonomously reached.

Definition 6. Let S and T be compatible IA. The composition S ‖ T is the IA that results from S ⊗ T by removing
all transition q

a
−→S⊗T q′ s.t. (i) q is a compatible state in S ⊗ T, (ii) a ∈ AI

S⊗T , and (iii) q′ is an incompatible state in
S ⊗ T.

2.2 Interface Structure For Security

An Interface Structures for Security is an IA, where visible actions are divided in two disjoint sets: the high action set
and the low action set. Low actions can be observed and used for any user, while high actions are intended only for
users with the appropriate clearance.

Definition 7. An Interface Structure for Security (ISS) is a tuple 〈S , Ah, Al〉 where S = 〈Q, q0, AI , AO, AH ,−→〉 is an IA
and Ah and Al are disjoint sets of actions s.t. Ah ∪ Al = AO ∪ AI .

If necessary, we will write Ah
S and Al

S instead of Ah and Al, respectively, and write AX,m instead of AX ∩ Am with
X ∈ {I,O} and m ∈ {h, l}.

Extending the definition of composition of IA to ISS is straightforward.

Definition 8. Let S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 be two ISS. S and T are composable if S and T are com-

posable. Given two composable ISS, S and T , their composition, S ‖ T , is defined by the ISS 〈S ‖ T, (Ah
S ∪ Ah

T ) −
shared(S ,T ), (Al

S ∪ Al
T ) − shared(S ,T )〉.

3 Observability

Semantic equivalences for sequential systems with silent moves are studied in [2]. Resulting in 155 notions of ob-
servability and a complete comparison between them. Unfortunately, these results cannot be applied straightforward
to the IA context. For example, studied machines in [2] have not notions of input and output actions over the same
machine. Moreover, in [2] there is not a notion of the internal structure of the analyzed machine. This situation have
forced them to talk about definite and hypothetical behaviors of the machine. Despite these differences, we use [2] as
a reference to define different semantics for IA. To avoid the distinction between definite and hypothetical behaviors,
we use the transition relation of the IA to present the set of observable behaviors.

First we define type of observation, an information record that can be done by the user. Second, we define a notion
of observability as a set of types of observations. Each notion of observability defines a particular semantic. Third,
using the transition relation of the IA, we define the semantic of each type of observation and therefore a semantic for
each possible notion of observability.

Given a system, a type of observation is an information that can be recorded by a user with respect to the interface.
To define our types of observations we consider the following assumptions: input and output actions are observable
when they are executed. Inputs are executed by a user, while outputs are executed by the interface. Then, input actions
are controllable by the user and output actions are controllable by the interface. Internal transitions are controllable by
the interface. In some cases, internal transitions can be detectable by the user but the user cannot distinguish between
different internal actions. An user can observe how the interface interact with another user or he can be the one who
interacts. If the user is interacting, the interface can behave in different ways as a result of some violation of its input
assumptions: (i) it does not show any error and continues with the execution, (ii) it stops the execution and shows an
error to the user, (iii) it shows an error to the user and continues with the execution; (iv) finally, an interface could
provide a special service to inform which inputs are enabled in its current state. In this way, the user can avoid input
assumption violations. Notice that cases (i), (ii) and (iii) determine, at the semantic level, a sort of input-enableness. In
these cases we fix the behavior of input actions that are not defined in a particular state. The last four assumptions do
not increase the expressiveness power of the model, as consequence they can be implemented in any IA. For example:
let S be an IA, the assumption (i) can be implemented with self loops with action a? for all state state s ∈ QS and
a? ∈ AI − I(s). Using the same reasoning, we assume an interface could provide a service to detect the end of an
execution, where the end is reached when no more transitions are possible. In addition, a user can make copies of the
interface with the objective of studying the interface in more detail. Finally, a user can do global testing. Under this
assumption it is possible to say that a particular observation will not happen.

Based on these assumptions, we introduce the following types of observations:
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a The execution of external actions AI ∪ AO are detectable.

ε, ε6 The case of internal transitions are detectable is denoted with ε. Otherwise ε6 .

T The session is terminated by the user. This is possible in any time. After this no more records are possible

�6 ,� If a user only observes the actions that are executed by an interface and cannot send stimuli to it, then there
is no interaction. We denote this with�6 . The case where the interaction is possible is denoted by�.

F The user interacts with system and the interface stops the execution whenever it receives an input action
that is not enabled. In this case, the stop is observable.

FT Suppose the previous type but now whenever the interface receives an input action that is not enabled, the
error is informed to the user and the execution continues.

RT To avoid the error of sending an input action that is not enabled, the interface can provide a method to check
what input actions are enabled in its current state. In this case, the observation includes the set X of enabled
inputs.

0 This type is used if it is detectable when an interface reachs a final state, i.e. no more activity is possible.∧
Suppose the user has a machine to make arbitrary number of copies of the system. These copies reveal more
information about the interface because one could observes different execution from the same interface. If
the user makes N copies and in each copy executes φi for i ∈ {1, . . . ,N}, this observations is denoted with∧n

i=1 φi.

¬ It is possible to test the interface over all possible condition. This allows to ensure that a particular obser-
vation is not possible; then a user can do an observation ¬φ whenever φ is not possible execution of the
system.

The types of observations studied here are not the studies in [2]. On one hand, we decided to skip some types for
the sake of simplicity. For example we did not include η-replication nor continuous copying, which are different forms
of make copies of the system. We did not include the notion of stable state, this avoids the inclusion of some variant
of types of visibilities presented here. On the other hand, we have added new features. First, we differentiate between
a user that interacts with the interface and a non-interacting user. Second, the knowledge of the internal structure of
the interface allow us to know exactly when an internal action could be executed and define if the internal transitions
are observable or not. This is a relevant feature in the context of security, because it could be used to represent covert
channels.

A set of types of observations defines a notion of observability, see Definition 9. The notion of observability
determines what information can be observed by a user. This has to be consistent, for example, types of observations
“a user cannot interact with the interface” (�6 ) and “a user can detect that the input sent was not enabled” (F) cannot
belong to same notion of observability. Note that the definition of notion of observability ensures consistency.

Definition 9. A set V is a notion of observability (for IA) if V ⊆ {a, ε, ε6 , 0,�,�6 ,T, F, FT ,RT ,
∧
,¬} and V satisfies

the following conditions:

1. {a,T } ⊆ V,

2. |{ε, ε6 } ∩ V | = 1,

3. |{�,�6 , F, FT ,RT } ∩ V | = 1.

Condition (1) ensures that input and output actions are always visible and that the user can terminate the session
when he wants. Condition (2) ensures that internal transitions are detectable or not. Condition (3) ensures that a user
can interact with the interface (�, F, FT ,RT ) or not (�6 ), and if he interacts, he will do in one particular way.

In [2] other kind of restrictions were added to simplify the study of which semantics make more differences: for
example conditions as “if FT ∈ V then F ∈ V” are added. This reflects the fact that if the interface stops when a
disable input is received, all observations that one can do in this scenario, can be done in the same machine configured
to continue when the error occurs. Since we are not interested in studying which semantics is coarser than others, we
omit these conditions.

Semantic. First we define all possible observations as a set of logic formulas called execution formulas. Then the
set of observable behavior of an IA is the set of execution formulas that are satisfied by the initial state of the interface.

Definition 10. The set of execution formulasL for an IA S = 〈Q, q0, AI , AO, AH ,−→〉 is the smallest set satisfying rules
in Table 1.
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T ∈ L 0 ∈ L 6a ∈ L ∀a ∈ AI φ ∈ L a ∈ AI ∪ AO ∪ {ε}

aφ ∈ L
φ ∈ L a ∈ AI

6aφ ∈ L
φ ∈ L X ⊆ AI

Xφ ∈ L
φi ∈ L i ∈ I∧

i∈I φi ∈ L

φ ∈ L

¬φ ∈ L

Table 1: Recursive rules for definition of execution formulas.

(T ) q |= T ∀q ∈ Q
(0) q |= 0 if q

a
−→6 for all a ∈ A

(a) q |= aφ if a ∈ AI ∪ AO and ∃q′ ∈ Q: q
a
−→ q′ and q′ |= φ

(ε6 ) q |= φ if a ∈ AH and ∃q′ ∈ Q: q
a
−→ q′ and q′ |= φ

(ε) q |= εφ if a ∈ AH and ∃q′ ∈ Q: q
a
−→ q′ and q′ |= φ

(�) q |= aφ if a ∈ AI − I(q) and q |= φ
(F) q |= 6a if a ∈ AI − I(q)
(FT ) q |= 6aφ if a ∈ AI − I(q) and q |= φ
(RT ) q |= Xφ if X = I(q) and q |= φ
(
∧

) q |=
∧

i∈I φi if q |= φi for all i ∈ I
(¬) q |= ¬φ if q 6|= φ

Table 2: Semantic of the observations

Definition 11. Given an IA S = 〈Q, q0, AI , AO, AH ,−→〉 and a notion of observability V, the satisfaction relation
|=V ⊆ Q × L is defined for each type of observation in V by clauses in Table 2. The observables behavior of an IA S
with notion of observability V is OV (S ) = {φ ∈ L : q0 |=V φ}

4 Non interference based on Notion of Observability.

First we introduce a general notion of non-interference. Informally, non-interference states that users with no ap-
propriate permission cannot deduce any kind of confidential information or activity by only interacting through low
actions. Since it is expected that a low-level user cannot distinguish the occurrence of high actions, the system has to
behave the same when high actions are not performed or when high actions are considered as hidden actions. Hence,
restriction and hiding are central to our definitions of security.

Definition 12. Given an IA S and a set of actions X ⊆ AI
S ∪ AO

S , define:

• the restriction of X in S by S \X = 〈QS , q0
S , A

I
S − X, AO

S − X, AH
S ,−→S \X〉 where q

a
−→S \X q′ iff q

a
−→S q′ and a < X.

• the hiding of X in S by S/X = 〈QS , q0
S , A

I
S − X, AO

S − X, AH
S ∪ X,−→S 〉.

Given an ISS S = 〈S , Ah
S , A

l
S 〉 define the restriction of X in S by S\X = 〈S \X, Ah

S − X, Al
S − X〉 and the hiding of X in

S by S/X = 〈S/X, Ah
S − X, Al

S − X〉.

Definition 13. Let S = 〈S , Ah, Al〉 be an ISS and V a notion of observability, then:

• S is V strong non-deterministic non-interference (V-SNNI) if OV (S/Ah) = OV (S \Ah).

• S is V non-deterministic non-interference (V-NNI) if OV (S/Ah) = OV ((S \Ah,I)/Ah,O).

Notice the difference between the two definitions. V-SNNI formalizes the security property as we described so
far: a system satisfies V-SNNI if a low-level user cannot distinguish (up to notion of observability V) by means of low
level actions (the only visible ones) whether the system performs high actions (so they are hidden) or not (high actions
are restricted). In the definition of V-NNI only high input actions are restricted since the low-level user cannot provide
this type of actions; instead high output actions are only hidden since they still can autonomously occur. The second
notion is considered as it seems appropriate for IA where only input actions are controllable.

The approach of non-interference based on notion of observability generalizes other notion of non-interference for
IA. For example Non deterministic Non-Interference (NNI), Strong Non deterministic Non-Interference (SNNI), both
based on trace equivalence; Bisimulation NNI (BNNI) and Bisimulation SNNI (BSNNI) both based on bisimulation
equivalence. To prove our statement, we recall the definitions of trace equivalence, weak bisimulation and non-
interference properties.

7
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Definition 14. Let S and T be two IA. S and T are trace equivalent, notation S ≈T T, if Traces(S ) = Traces(T ). We
say that two ISS S and T are trace equivalent, and write S ≈T T , whenever the underlying IA are trace equivalent.

Definition 15. Let S and T be two IA. A relation R ⊆ QS × QT is a (weak) bisimulation between S and T if s0 R t0
and, for all s ∈ QS and t ∈ QT , s R t implies:

• for all a ∈ AS and s′ ∈ QS , s
a
−→S s′ implies that there exists t′ ∈ QT s.t. t

â
⇒T t′ and s′ R t′; and

• for all a ∈ AT and t′ ∈ QT , t
a
−→T t′ implies that there exists s′ ∈ QS s.t. s

â
⇒S s′ and s′ R t′.

We say that S and T are bisimilar, notation S ≈ T, if there is a bisimulation between S and T . Moreover, we say
that two ISS S and T are bisimilar, and write S ≈ T , whenever the underlying IA are bisimilar.

Definition 16. Let S = 〈S , Ah, Al〉 be an ISS.

1. S satisfies strong non-deterministic non-interference (SNNI) if S\Ah ≈T S/Ah.

2. S satisfies non-deterministic non-interference (NNI) if S\Ah,I/Ah,O ≈T S/Ah.

3. S satisfies bisimulation-based strong non-deterministic non-interference (BSNNI) if S\Ah ≈ S/Ah.

4. S satisfies bisimulation-based non-deterministic non-interference (BNNI) if S\Ah,I/Ah,O ≈ S/Ah.

We prove how to represent these notions of security with notions of observability.

Theorem 1. Let S = 〈S , Ah, Al〉 be an ISS then

1. S is (S)NNI iff S is V-(S)NNI with V = {a,T, ε6 ,�6 }.

2. S is B(S)NNI iff S is V-(S)NNI with V = {a,T, ε6 ,�6 ,
∧
,¬}.

Proof. First we prove (2). For this, we have to show that for all states s ∈ QS and t ∈ QT it holds s ≈ t iff
OV (s) = OV (t). (⇒) Suppose s ≈ t and φ ∈ OV (s). Let f : L → N a function defined as:

f (T ) = f (0) = f ( 6a) = 0 f (aφ) = f (6aφ) = f (Xφ) = f (¬φ) = f (φ) + 1 f (
∧

i φi) = maxi( f (φi)) + 1 (*)

We define f in general for all L since we will make use of it again later. We proceed by complete induction. In the
base case f (φ) = 0 then φ = T because V = {a,T, ε6 ,�6

∧
,¬} and since T is an observation for every state φ ∈ OV (t).

By induction suppose that if s ≈ t then, if f (φ) ≤ k and φ ∈ OV (s) it holds φ ∈ OV (t). Let f (φ) = k + 1, we do case
analysis according to the shape of the formula. Suppose φ = aφ′ with a ∈ AI ∪ AO. s |= aφ implies s

a
⇒ s′ and

φ ∈ O(s′) (see (a) and (ε6 ) in Table 2). Since s ≈ t there is state t′ such that s′ ≈ t′. By induction φ′ ∈ OV (t′), therefore
aφ′ ∈ OV (t). Now let φ =

∧
i φi. Since f (φi) ≤ k for all i, by induction φi ∈ OV (t). Therefore φ =

∧
i φi ∈ OV (t). Now

suppose φ = ¬φ′ then f (φ′) = k and s 6|= φ′, by induction t 6|= φ′. Therefore t |= ¬φ′, ie φ ∈ OV (t). The other cases are
outside of the observation defined by V . The symmetric case is analogous.

(⇐) Let OV (s) = OV (t) and s
a
−→ s′. We have to show that there is t′ such that t

a
⇒ t′ and OV (s′) = OV (t′).

Since OV (s) = OV (t) we have t
a
⇒. Let Q be {t′ : t

a
⇒ t′}. If for all t′ ∈ Q it holds OV (s′) , OV (t′) then there is

φs′ ∈ OV (s′) − OV (t′) (as consequence of (¬)). Then for any t′ ∈ Q it holds
∧

q∈Q φq ∈ OV (s′) − OV (t′) (at least one φq

fails). But then a
∧

q∈Q φq ∈ OV (s) − OV (t) contradicting OV (s) = OV (t). The symmetric case is analogous.
To prove (1) we show that given two IA S and T it holds S ≈T T iff OV (S ) = OV (T ). We reduce this to prove

φ ∈ Traces(S ) iff φT ∈ OV (S ). This proof is straightforward. �

The relation between V-SNNI and V-NNI depends on the notion observability V . In general, we only can ensure
V-NNI is not stronger than V-SNNI for all V .

Theorem 2. For all notion of observability V there is an ISS S such that S is V-NNI and S is not V-SNNI.

Proof. Let S the following ISS s0
H!
−−→ s1

a
−→ s2 with a ∈ AI ∪ AO. Notice S is always V-NNI. On the other hand

S is not V-SNNI: if ε6 ∈ V then aT ∈ OV ((S/Ah)) and aT < OV ((S \Ah)); if ε ∈ V then εaT ∈ OV ((S/Ah)) and
εaT < OV ((S \Ah)). �

This result is not novel. In [8], it is shown that SNNI is stronger than NNI. Therefore as trace semantic is the
coarsest sensible semantic on labeled transition system, it is natural that the result holds for all other semantic. The
Theorem 2 only formalize this fact for IA semantics.

The other relations depend on V and we state in the following two theorems. Previously an auxiliary lemma.
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Lemma 1. Let S be an IA and V a notion of observability such that {0,¬} ∩ V = ∅. Let S ′ be an IA obtained by
removing a set of internal transitions from S . Then O(S ) ⊇ O(S ′).

Proof. The proof is straightforward by induction in f (φ) where φ ∈ OV (S ′) and f is the function defined in (*). �

Theorem 3. Let S be an ISS and V a notion of observability such that {0,¬}∩V = ∅. If S is V-SNNI then S is V-NNI.

Proof. If S is V-SNNI then OV (S/AH) = OV (S \AH). Notice S \AH is obtained by removing some hidden transitions
from (S \Ah,I)/Ah,O, then OV ((S \Ah,I)/Ah,O) ⊇ OV (S \AH) by Lemma 1, and therefore OV ((S \Ah,I)/Ah,O) ⊇ OV (S/AH).
On the other hand (S \Ah,I)/Ah,O is obtained by removing some hidden transitions from S/AH then OV (S/AH) ⊇
OV ((S \Ah,I)/Ah,O) by Lemma 1. Both inclusions imply OV (S/AH) = OV ((S \Ah,I)/Ah,O). �

s0 s1 s2 s3 s4

s5 s6 s7 s8

b; // a // b; // a //

H1!
�� a // H2? // a //

S

Figure 3: S is V-SNNI does not imply S is V-NNI if V ∩ {0,¬} , ∅

Theorem 4. For all notion of observability V such that V ∩ {0,¬} , ∅ there is an ISS S such that S is V-SNNI and S
is not V-NNI.

Proof. Define S as ISS in Figure 3 with a ∈ AI ∪ AO. Clearly S is V-SNNI for all V . Suppose ε6 ∈ V: if ¬ ∈ V then
a¬a ∈ OV ((S \Ah,I)/Ah,O) while a¬a < OV (S \AH); if 0 ∈ V then a0 ∈ OV ((S \Ah,I)/Ah,O) while a0 < OV (S \AH). Then
S is not V-NNI for any V such that V ∩ {0,¬} , ∅. The case ε ∈ V is analogous. �

The approach based on notion of observability also allows to show that security properties are not preserved by
composition.

s0 s1 s2 s3 s4

s5

s6

s7 s8 s9 s10 s11

a; // b? // c! // a; //
a; 77

H1? ''
H2?

�� b? // c! //
H1?

// a; //

S

t0 t1

t2

t3

c? //
H1! 66

d; ((

T

s0, t0 s1, t0

s7, t0 s8, t0 s9, t1

s10, t2 s11, t2

s9, t3

a; //

b? // c; //

H1; 77
a; //

d; //
H2?

��

S ‖ T

Figure 4: V-SNNI and V-NNI properties are not preserved by composition.

Theorem 5. For all notion of observability V there are ISS S and T such that S and T are V-(S)NNI and composable,
and the composition S ‖ T is not V-(S)NNI.

Proof. Let S and T be ISS depicted in Figure 4. Both interfaces are V-(S)NNI for all notion of observability V but
S ‖ T is not. If ε6 ∈ V then b?T ∈ OV ((S ‖ T )/Ah) while if ε ∈ V then εb?T ∈ OV ((S ‖ T )/Ah). In any case,
OV ((S ‖ T )\Ah) = OV (((S ‖ T )\Ah,I)/Ah,O) and b?T, εb?T < OV ((S ‖ T )\Ah). Then S ‖ T is not V-(S)NNI. �

5 Non-interference based on refinement.

In [9], we presented definitions of non interference based on refinement. The new versions of non-interference were
introduced to solve some shortcomings detected in the definitions of non interference based on bisimulation of [6], ie
BSNNI and BNNI. In this section we review the results obtained.

To address the shortcomings detected in B(S)NNI properties, a variation of non-interference based on refinement
was introduced. These variants are obtained from the definition of BSNNI and BNNI by replacing weak bisimulation
by a new relation. Under this new relation, two states s and t are related if they are able to receive the same input
actions; in addition, for every output transition that can execute t, the state s can execute zero or more hidden transitions
before executing the same output; finally, all hidden transitions that can execute t can be “matched” by s with zero or
more hidden transitions. In all cases, the reached states have to be also related. In this way state t does not reveal new
visible behavior w.r.t. the state s. Formally:

9
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s1 s2

s3 s4

�� H? //

a!
��

b!

%%
b!

��

S
v1

v2

��

a?/b?
��

v4 v5

v6 v7

H? // ε //

a?
��

a?/b?
��

V

Figure 5: In these interfaces, BSNNI and BNNI are not appropriate properties to denote security.

Definition 17. Given two IA S and T , a relation < ⊆ QS × QT is a Strict Input Refinement (SIR) of S by T if q0
S < q0

T
and for all qS < qT it holds:
(a) ∀a ∈ AI

S , q
′
S ∈ QS , if qS

a
−→S q′S then ∃q′T ∈ QT : qT

a
−→T q′T and q′S < q′T ;

(b) ∀a ∈ AI
T , q

′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

a
−→S q′S and q′S < q′T ;

(c) ∀a ∈ AO
T , q

′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

ε
⇒S

a
−→S q′S and q′S < q′T ;

(d) ∀a ∈ AH
T , q

′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

ε
⇒S q′S and q′S < q′T .

We say S is refined (strictly on inputs) by T, or, T refines (strictly on inputs) to S , notation S < T, if there is a SIR
< s.t. S < T. Let S and T be two ISS, we write S < T if the underlying IA satisfy S < T.

The definition of SIR is based on the definition of refinement of [5] only that restriction (b) is new with respect
to the original version. Based on this relation are defined non-interference properties based on refinement. They are
called SIR-NNI and SIR-SNNI.

Definition 18. Let S be an ISS. (i) S is SIR-based strong non-deterministic non-interference (SIR-SNNI) if S\Ah <
S/Ah (ii) S is SIR-based non-deterministic non-interference (SIR-NNI) if S\AI,h/AO,h < S/Ah.

This new formalization of security ensures that under the presence of high level activity no new information is
revealed to low users w.r.t. the system with only low activity, because the interface S\Ah (resp. S\AI,h/AO,h) is refined
by S/Ah.

Now we show there is a notion of observability V such that V-(S)NNI is equivalent to SIR-(S)NNI. To prove the
result we need the following theorem:

Theorem 6. Given two IA S and T , S is refined strictly on inputs by T , ie S < T iff OV (S ) ⊇ OV (T ) with V =

{a,T, ε6 ,RT ,
∧
}.

Proof. For this, we have to show that for all states s ∈ QS and t ∈ QT it holds s < t iff OV (s) ⊇ OV (t). (⇒) Suppose
s < t and φ ∈ OV (t). Let f : L → N the function defined in (*). We proceed by complete induction. In the base
case f (φ) = 0 then φ = T because V = {a,T, ε6 ,RT ,

∧
} and since T is an observation for every state, then φ ∈ OV (s).

Inductive case. By induction suppose that if s < t then, if f (φ) ≤ k and φ ∈ OV (t) it holds φ ∈ OV (s). Let f (φ) = k + 1,
we do case analysis according to the shape of the formula. Suppose φ = Xφ′. Since t |= Xφ′ then t |= φ′. Moreover,
s < t implies I(s) = I(t) and therefore s |= Xφ′ using induction. Cases aφ′ and

∧
i φi are like this respective case in

proof of Theorem 1.

(⇐) Let OV (s) ⊇ OV (t). Case t
a?
−→ t′: we have to show there is s′ such that s

a?
−→ s′ and OV (s′) ⊇ OV (t′).

If s
a?
−→6 then I(s) , I(t) and therefore OV (s) + OV (t) because t |= I(t)T and s 6|= I(t)T . Let s′ such that s

a?
−→ s′,

notice s′ is unique because IA are input deterministic. If OV (s′) + OV (t′) there is φ′ ∈ OV (t′) − OV (s′). This implies

a?φ′ ∈ OV (t) − OV (s) and we get a contradiction. In the case s
a?
−→ s′, we have to show there is t′ such that t

a?
−→ t′

and OV (s′) ⊇ OV (t′), this proof is similar to the previous one. Let now t
a!
−→ t′, we have to show there is s′ such

that s ⇒
a!
−→ s′ and OV (s′) ⊇ OV (t′). Let Q be {s′ : t ⇒

a
−→ s′}. If for all s′ ∈ Q it holds OV (s′) + OV (t′) then there

is φs′ ∈ OV (t′) − OV (s′). Then for any s′ ∈ Q it holds
∧

q∈Q φq ∈ OV (t′) − OV (s′) (at least one φq fails). But then

a
∧

q∈Q φq ∈ OV (t) − OV (s) contradicting OV (s) ⊇ OV (t). Case t
a;
−→ t′ is analogous. �

Now we are able show the statement.

Lemma 2. An IA S is SIR-(S)NNI iff S is {a,T, ε6 ,RT ,
∧
}-(S)NNI.

Proof. If S is SIR-SNNI then S \Ah < S/Ah. By Theorem 6 we have OV (S \Ah) ⊇ OV (S/Ah). On the other hand,
by Lemma 1 we have OV ((S/Ah)) ⊇ OV ((S \Ah)). Finally OV ((S/Ah)) = OV ((S \Ah)). The case S is SIR-NNI is
analogous. �
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Two properties about SIR-NNI and SIR-SNNI were introduced in [9]. The first one, if an ISS is SIR-(S)NNI
then it is (S)NNI. This is straightforward using their respective equivalent definition with notion of observability, ie
{a,T, ε6 ,RT ,

∧
}-(S)NNI and {a,T, ε6 ,�6 }-(S)NNI. The second one, if an ISS is SIR-SNNI then it is SIR-NNI. This is a

particular case of Theorem 3.

5.1 Composition

Theorem 5 shows that non-interference properties are not preserved for all notion of observation V . This implies
SIR-SNNI and SIR-NNI properties are not preserved by the composition.

Despite this, we give sufficient conditions to ensure that the composition of ISS results in a non-interferent ISS
(always with respect to SIR-SNNI and SIR-NNI). Basically, these conditions require that (i) the component ISS are
fully compatible, i.e. no error state is reached in the composition (in any way, not only autonomously), and (ii) they
do not use confidential actions to synchronize. This is stated in the following theorem.

Theorem 7. Let S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 be two composable ISS such that shared(S ,T )∩ (Ah

S ∪Ah
T ) = ∅.

If S ⊗ T has no reachable error states and S and T satisfy SIR-SNNI (resp. SIR-NNI) then S ‖ T satisfies SIR-SNNI
(resp. SIR-NNI).

Proof. Define < by (sr, tr) < (sa, ta) iff sr <S sa and tr <T ta with <S being a SIR between S \Ah
S and S/Ah

S and
similarly for <T . We show that < is a SIR between (S ‖ T )\Ah and (S ‖ T )/Ah where Ah = (Ah

S ∪Ah
T )−shared(S ,T ) =

Ah
S ∪ Ah

T .
Suppose (sr, tr) < (sa, ta). We proceed by case analysis on the different transfer properties on Def 17. For case (a)

suppose (sr, tr)
a?
−→ (s′r, tr) and sr <S sa. Then there is s′a such that sa

a?
−→ s′a and s′r < s′a. As a consequence of the

absence of error state in the product, we can ensure (sa, ta)
a?
−→ (s′a, ta) and (s′r, tr) < (s′a, ta). The case (sr, tr)

a?
−→ (sr, t′r)

is analogous. In the same way we prove that condition (b) holds. For condition (c), let (sa, ta)
a!
−→ (s′a, ta) and sr <S sa.

Then there is s′r such that sr ⇒
a!
−→ s′r and s′r <S s′a. Let ŝ be a state s.t. sr ⇒ ŝ

a!
−→ s′r. Notice that all internal transition

used to reach ŝ in S \Ah can be executed in (S ‖ T )\Ah. Then (sr, tr) ⇒ (ŝ, tr)
a!
−→ (s′r, tr) and (s′r, tr) < (s′a, ta).

The case (sa, ta)
a!
−→ (sa, t′a) is analogous. We finally prove that condition (d) holds. Cases (sa, ta)

ε
−→ (s′a, ta) and

(sa, ta)
ε
−→ (sa, t′a) are similar to the previous one. Suppose now (sa, ta)

εc
−→ (s′a, t

′
a) where εc is an internal action

resulting from a synchronization between S and T on common action c. Notice c ∈ Al
S ∩ Al

T . W.l.o.g suppose

sa
c?
−→ s′a and ta

c!
−→ t′a. Repeating previous reasoning, we can ensure there is state t̂ such that (sr, tr)⇒ (sr, t̂)

c;
−→ (s′r, t

′
r)

and (s′r, t
′
r) < (s′a, t

′
a). �

This result is useful when we develop all the components of a complex system. As we have total control of each
component design, it is possible to achieve full compatibility. In this way, to ensure that the composed system is
secure, we only have to develop secure components s.t. every high action of the component is a high action of the final
system. This result can also be used when we are not in control of all components, i.e. we want use components not
developed by us. The idea is simple, given two ISS, define the high actions used in the communication process as low
and check if the resulting ISS satisfies the hypothesis of Theorem 7.

Corollary 1. Let S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 be two composable ISS. Let S′ = 〈S , Ah

S − shared(S ,T ), Al
S ∪

shared(S ,T )〉 and T ′ = 〈T, Ah
T − shared(S ,T ), Al

T ∪ shared(S ,T )〉. If S ⊗ T has no reachable error states and S′ and
T ′ satisfy SIR-SNNI (resp. SIR-NNI) then S ‖ T satisfies SIR-SNNI (resp. SIR-NNI).

This result is based on the fact that actions used in the synchronization become hidden in the composition, then it
is not important the confidential level of the actions.

5.2 Deriving Secure Interfaces

As we have seen, the composition of secure interfaces may yield a new insecure interface. This may happen when
the components are already available but they were designed independently and they were not meant to interact. The
question that arises then is if there is a way to derive a secure interface out of an insecure one. To derive the secure
interface, we adapt the idea used to define ISS composition (see Def. 6); i.e. we restrict some input transitions in order
to avoid insecure behavior. We then obtained a composed system that offers less services than the original one but is
secure. In this section we present an algorithm to derive an ISS satisfying SIR-SNNI (or SIR-NNI) from a given ISS
whenever possible. Since the method is similar in both cases, we focus on SIR-SNNI.

This algorithm is based on the algorithm presented in [6] to derive interfaces that satisfy BSNNI/BNNI, which
in turn is based on the algorithm for bisimulation checking of [10]. The differences between both algorithm are
consequence of the definition of SIR but the idea behind the procedure is the same. The new algorithm works as

11
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follows: given two interfaces V and V′, the second without high actions, (i) V is semi-saturated adding all weak
transitions⇒

a
−→; (ii) a semi-synchronous product ofV andV′ is constructed where transitions synchronize whenever

they have the same label and satisfy some particular conditions; (iii) whenever there is a mismatching transition, a new
transition is added on the product leading to a special fail state; (iv) if reaching a fail state is inevitable thenV 6< V′;
if there is always a way to avoid reaching a fail state, then V < V′ . We later define properly semi-saturation, semi-
synchronous product and what means inevitably reaching a fail state. In this way, given an ISS S, we can check if
S\Ah < S/Ah, if the check succeeds, then S satisfies SIR-SNNI (see Theorem 8). If it does not succeed, then we
provide an algorithm to decide whether S can be transformed into a secure ISS by controlling (i.e. pruning) input
transitions. This decision mechanism categorizes insecure interfaces in two different classes: the class of interfaces
that can surely be transformed into secure one and the class in which this is not possible.

The algorithm to synthesize the secure ISS (once it is decided that it is possible) selects an input transition to prune,
prune it, and checks whether the resulting ISS is secure. If it is not, a new input transition is selected and pruned. The
process is repeated until it gets a secure interface. This process is shown to terminate (see Theorem 9).

Checking Strict Inputs Refinement. Different labels for internal actions do not play any role in a SIR relation.
Then, to simplify, we replace all labels of internal action for two new ones: ε and ε′. The label ε′ is used to represent
an internal transition that can be removed; in our context, an internal action can be removed because it is a high input
action that was hidden in order to check for security. Label ε is used to identify internal action that cannot be removed.
This is formalized in the following definition, which includes self-loops with ε and ε′ for future simplifications.

Definition 19. Let S be an IA and B ⊆ AH
S . Define S marking B or marking B in S as the IA S B = 〈QS , q0

S , A
I
S , A

O
S , {ε, ε

′},−→S B〉

where −→S B is the least relation satisfying following rules:

q
ε
−→S B q q

ε′

−→S B q
q

a
−→S q′ a ∈ AI

S ∪ AO
S

q
a
−→S B q′

q
a
−→S q′ a ∈ B

q
ε′

−→S B q′

q
a
−→S q′ a ∈ AH

S − B

q
ε
−→S B q′

Given an ISS S, the marking B in S, notation SB, is the ISS obtained after marking B in the underlying IA.

A natural way to check weak bisimulation is to saturate the transition system i.e., to add a new transition q
a
−→ q′ to

the model for each weak transition q
a
⇒ q′, and then checking strong bisimulation on the saturated transition system.

Applying a similar idea we can check if there is a SIR relation. We add a transition q
a
−→ q′ whenever q⇒

a
−→ q′ with a

an output action. We call this process semi-saturation.

Definition 20. Let S be an IA such that AH
S = {ε, ε′}. The semi-saturation of S is the IA S = 〈QS , q0

S , A
I
S , A

O
S , {ε, ε

′},−→S 〉

where −→S is the smallest relation satisfying the following rules:

q
a
−→S q′

q
a
−→S q′

q
ε
−→S q′ q′

a
−→S q′′ a ∈ AO

S

q
a
−→S q′′

Given an ISS S, its semi-saturation, S, is the ISS obtained by saturating the underlying IA.

The last definition ensure that: if a ∈ AO then q⇒
a
−→S q′ iff q

a
−→S q′.

Following [6] and [10], the definition of the synchronous products follows from the conditions of the relation being
checked, in this case SIR. First, we recapitulate these conditions and then we present the formal definition. If S < T
then for two states s ∈ QS and t ∈ QT s.t. s < t, every output/hidden action that t can execute has to be simulated by
s (probably using internal action); on the other hand, t is not forced to simulate output/hidden actions from s. Finally,
both states have to simulate all input action that can be executed by the other one without performing previously any
internal action. All these restrictions become evident from the definition of SIR. When a condition is not satisfied, a
transition to a special state fail is created. Taking this into account we define the semi-synchronized product.

Definition 21. Let S be a semi-saturated IA and T be an IA such that AX
S = AX

T = AX for X ∈ {I,O} and AH
S = AH

T =

{ε, ε′}. The semi-synchronous product of S and T is the IA S × T = 〈(QS ×QT )∪ {fail}, (q0
S , q

0
T ), AI , AO, {ε, ε′},−→S×T 〉

where −→S×T is the smallest relation satisfying following rules:

qS
a
−→S q′S qT

a
−→T q′T

(qS , qT )
a
−→S×T (q′S , q

′
T )

qS
ε′

−→S q′S qT
ε
−→T q′T

(qS , qT )
ε′

−→S×T (q′S , q
′
T )

qS
ε
−→S q′S qT

ε′

−→T q′T

(qS , qT )
ε′

−→S×T (q′S , q
′
T )

qS
a
−→S qT

a
−→6 T a ∈ AI

(qS , qT )
a
−→S×T fail

qS
a
−→6 S qT

a
−→T

(qS , qT )
a
−→S×T fail

12
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Given S = 〈S , Ah
S
, Al
S
〉 and T = 〈T, Ah

T
, Al
T
〉 with S and T satisfying conditions above and Am

S
= Am

T
= Am for

m ∈ {l, h}, then the semi-synchronous product of S and T is defined by the ISS S × T = 〈S × T, Ah, Al〉.

Let us show how we can use synchronous product to check and derive, whenever it is possible, a SIR relation. If
there is a state (qS , qT ) such that (qS , qT )

a
−→S×T fail then it is evident that qS 6< qT . Moreover, suppose the synchronous

product only has states (qS , qT ) and fail and the transition (qS , qT )
a
−→S×T fail. If a ∈ AO, as the progress from (qS , qT )

is autonomous, there is no way to control the execution of a! and hence there is no way to avoid qS 6< qT . Then, we
say that (qS , qT ) fails the SIR-relation test. On the other hand, if a ∈ AI , a state offers a service that the other does not.
In this case, removing the input transition a (the interface offers less services), we avoid transition (qS , qT )

a
−→S×T fail

in the synchronous product and we get two states such that qS < qT , moreover, we get two interfaces related by a SIR
relation. In this case, we say that (qS , qT ) may pass the SIR relation test. In a more complex synchronous product,
the “failure” in the state (qS , qT ) has to be propagated backwards appropriately to identify pairs of states that cannot
be related. This propagation is done by the definitions of two different sets: Fail and May. The set Fail contains those
pairs that are not related by a refinement and there is no set of input transitions to prune so that the pair may become
related by the refinement. On the other hand, May contains pairs of states that are not related but will be related if
some transition is pruned. States not in Fail ∪ May, belong to the set Pass. All pairs in Pass are related by a SIR
relation.

Fail0 = {(qS , qT ) : (qS , qT )
a
−→S×T fail, a < AI} ∪ {fail}

Failk+1 = Failk
∪ {(qS , qT ) : a ∈ AO ∪ A, qT

a
−→ q′T , (∀q′S : (qS , qT )

a
−→ (q′S , q

′
T ) : (q′S , q

′
T ) ∈ Failk)}

Table 3: The Fail set.

May0 =
⋃

q
a
−→q′∈(−→S ∪−→T )

May0

q
a
−→q′

Mayk+1 = Mayk ∪
⋃

q
a
−→q′∈(−→S ∪−→T )

Mayk+1

q
a
−→q′

May0

q
a
−→q′

= {(qS , qT ) : (q = qS ∨ q = qT ), a ∈ AI , (qS , qT )
a
−→S×T fail}

Mayk+1

qS
a
−→q′S

= {(qS , qT ) < Fail : a ∈ A, qS
a
−→ q′S , (∀q′T : (qS , qT )

a
−→ (q′S , q

′
T ) : (q′S , q

′
T ) ∈ Fail ∪Mayk)}

Mayk+1

qT
a
−→q′T

= {(qS , qT ) < Fail : a ∈ A, qT
a
−→ q′T , (∀q′S : (qS , qT )

a
−→ (q′S , q

′
T ) : (q′S , q

′
T ) ∈ Fail ∪Mayk)}

Table 4: The definition of May set .

Definition 22. Let S × T be a synchronous product. We define the sets Fail,May,Pass ⊆ QS×T respectively by:
• Fail = ∪∞i=0Faili where Faili is defined in Table 3. If q ∈ Fail, we say that the pair q fails the SIR relation test.
• May = ∪∞i=0Mayi where Mayi is defined in Table 4. If q ∈ May, we say that the pair q may pass the SIR relation

test.
• Pass = QS×T − (May ∪ Fail). If q ∈ Pass, we say that the pair q passes the SIR relation test

If the initial state of the underlying IA of an ISS S×T passes (may pass, fails) the SIR relation test, we say that S×T
passes (may pass, fails) the SIR relation test.

The proof of the following lemma is based on the proof of the algorithm to check bisimulation in [10], for this
reason we only present a proof sketch. Our proof deviates a little from the original as a consequence of not all
mismatching transitions are problematic.

Lemma 3. A semi-synchronized product S × T passes the SIR relation test iff S < T.

Proof sketch. Since (May ∪ Fail) ∩ Pass = ∅, we only have to prove that (i) (qS , qT ) ∈ May ∪ Fail implies qS 6< qT

and (ii) if (qS , qT ) ∈ Pass then qS < qT . The proof of (i) is by induction on k in Mayk and Failk. The proof of (ii) is
straightforward after showing that, given a state (s, t) ∈ QS×T ∩ Pass, then:

1. if s
a
−→ s′ and a ∈ AI then there is a state t′ s.t. there is a transition (s, t)

a
−→ (s′, t′) and (s′, t′) ∈ Pass.

2. if t
a
−→ t′ then there is a state s′ s.t. there is a transition (s, t)

a
−→ (s′, t′) and (s′, t′) ∈ Pass.

13
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EC(PS) ={q
a
−→ q′ : (∃q̂ : (q, q̂) ∈ May0

q
a
−→q′
∨ (q̂, q) ∈ May0

q
a
−→q′

)} ∪ (1)

{q
a
−→ q′ : (∃q̂ : (q, q̂) ∈ May1

q
a
−→q′

, (∀q̂′ : (q, q̂)
a
−→ (q′, q̂′) : (q′, q̂′) ∈ Fail))} ∪ (2)

{q
a
−→ q′ : (∃q̂ : (q̂, q) ∈ May1

q
a
−→q′

, (∀q̂′ : (q̂, q)
a
−→ (q̂′, q′) : (q̂′, q′) ∈ Fail))} ∪ (3)

{q
a
−→ q′ : a ∈ Ah,I , q

a
−→ q′, (∃q̂ : (q̂, q) ∈ May1

q
ε′

−→q′
, (∀q̂′ : (q̂, q)

ε′

−→ (q̂′, q′) : (q̂′, q′) ∈ Fail))} (4)

Table 5: Set of eliminable candidates.

The proof of both statements is by case analysis on a obtaining always a contradiction. �

Using this lemma, we can verify if an interface is SIR-SNNI, since S is SIR-SNNI if S \Ah is refined by S/Ah.
Notice that we cannot use S \Ah and S/Ah to create a semi-synchronized product; in general, S \Ah does not satisfy
AH = {ε, ε′} and it is not semi-saturated. This can be solved marking ∅ in S \Ah and then semi-saturating the interface,
i.e. we work with (S \Ah)∅ instead of S \Ah. Similarly, S/Ah does not satisfy AH = {ε, ε′}. Since ε′ is used to
represent the internal action that can be removed, we solve this problem marking Ah,I in S/Ah, i.e. we replace S/Ah

by (S/Ah)Ah,I . Therefore, verifying that S satisfies SIR-SNNI amounts to checking whether PS = S \Ah
∅ × (S/Ah)Ah,I

passes the refinement test. Applying a similar reasoning, if we are interested on verifying SIR-NNI, we can check if
((S \Ah,I)/Ah,O)∅ × (S/Ah)Ah,I passes the SIR-relation test. Then we have a decision algorithm to check whether an ISS
satisfies SIR-SNNI or SIR-NNI. We state it in the following theorem.

Theorem 8. Let S = 〈S , Ah, Al〉 be an ISS.

1. S satisfies SIR-SNNI iff (S\Ah)∅ × (S/Ah)Ah,I passes the SIR-relation test.

2. S satisfies SIR-NNI iff ((S \Ah,I)/Ah,O)∅ × (S/Ah)Ah,I passes the SIR-relation test.

Synthesizing Secure ISS. In the following, we show that if a synchronized product PS may pass the SIR relation
test then there is a set of input transition that can be pruned so that the resulting interface is secure. First, we need to
select which are the candidate input actions to be removed. So, if S is an ISS such that PS may pass the SIR-relation
test, the set EC(S) ⊆ −→ ∩ Q × AI × Q (see Table 5) is the set of eliminable candidates.

All transitions in EC(S) are involved in a synchronization that connects a source pair that may pass the SIR-relation
test and a failing target. This can happen in four different situations. The first one is the basic case, in which one of
the components of the pair can perform a low input transition that cannot be matched by the other. The following two
cases are symmetric and consider the case in which both sides can perform an equally low input transition but end up
in a failing state. The last case includes high input actions that are hidden in the synchronized product and always
reach a pair that fails. Notice that if PS may pass the bisimulation test then EC(S) , ∅.

An important result is that no new failing pair of states is introduced by removing eliminable candidates. Moreover,
if a pair of states fails in the synchronous product of the original ISS and it is also present in the synchronous product
of the reduced ISS, then it also fails in this ISS. This ensures that a synchronous product that may pass the SIR-relation
test, will not fail after pruning. In a sense, Lemma 4 below states that the sets Fail and Pass ∪May remain invariant.

Lemma 4. Let S be an ISS s.t. PS may pass the SIR-relation test. Let S′ be an ISS obtained by removing one transition
in EC(S) from S (i.e. −→S′ = −→S − {q

a
−→ q′}, provided q

a
−→ q′ ∈ EC(S), and unreachable states are removed form S′).

Then it holds that: (i) FailPS′ = FailPS ∩ QPS′ ; (ii) (PassPS ∪MayPS ) ∩ QPS′ = PassPS′ ∪MayPS′
1.

Proof. We only show (i). (ii) is an immediate consequence of (i).

(Case ⊆). Clearly QPS ′ ⊆ QPS . Suppose q
b?
−→ q′ ∈ EC(S) is the transition that is removed. By induction

on k we show Failk
q

a
−→q′,PS′

⊆ Failk
q

a
−→q′,PS

for all k. This implies FailkPS′ ⊆ FailkPS and then FailPS′ ⊆ FailPS . Suppose

(qr, qa) ∈ Fail0
qa

a
−→q′a,PS′

. By definition, action a < AI∪{ε′} and (qr, qa)
a
−→ fail. Then a , b? and therefore (qr, qa)

a
−→ fail

belongs to PS. Then (qr, qa) ∈ Fail0
qa

a
−→q′a,PS

. Suppose now (qr, qa) ∈ Failk+1

qa
a
−→q′a,PS′

. Then a < AI ∪ {ε′} and (∀q′r :

(qr, qa)
a
−→ (q′r, q

′
a) : (q′r, q

′
a) ∈ FailkPS′ ). Notice that {(q′r, q

′
a) : (qr, qa)

a
−→PS (q′r, q

′
a)} = {(q′r, q

′
a) : (qr, qa)

a
−→PS′ (q′r, q

′
a)}

as consequence of b? ∈ AI ∪ {ε′}. By induction hypothesis FailkPS′ ⊆ FailkPS , then ∀q′a : (qr, qa)
a
−→ (q′r, q

′
a) : (q′r, q

′
a) ∈

FailkPS and we get (qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

and (qr, qa) ∈ Failk+1
PS .

1Subindices in FailPS , MayPS , etc. indicate that these sets were obtained from the synchronous product PS
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(Case (⊇).) We show by induction on k that FailkPS′ ⊇ FailkPS ∩QPS′ for all k. Let (qr, qa) ∈ Fail0PS ∩QPS′ . Moreover,

w.l.o.g. suppose (qr, qa) ∈ Fail0
qa

a
−→q′a,PS

. Since a < AI , the transition qr
a
−→ q′r cannot be removed and since qr

a
−→6 , then

it holds that (qr, qa) ∈ Fail0
qr

a
−→q′r ,PS′

⊆ Fail0PS′ . For the induction case, suppose w.l.o.g. (qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

∩ QPS′ .

Then (∀q′r : (qr, qa)
a
−→ (q′r, q

′
a) : (q′r, q

′
a) ∈ FailkPS ). Since (qr, qa) is reachable in S′ and a < AI , all pair (q′r, q

′
a) is

reachable in S′. By induction hypothesis, (q′r, q
′
a) ∈ FailkPS′ and then (qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

⊆ Failk+1
PS . �

The following theorem is the main result of this section. Notice that its proof defines the algorithm to prune input
actions and obtain a secure interface. A similar result holds for SIR-NNI.

Theorem 9. Let S be an ISS such that PS may pass the SIR relation test. Then there is an input transition set −→χ such
that, if S′ is the ISS obtained from S by removing all transitions in −→χ, S′ is SIR-SNNI.

Proof. We only report a proof sketch. The complete proof follows in the same way as the proof of Theorem 4.10 in
[6]. Let S′ be an ISS obtained from S by removing one transition from the set EC(S). Lemma 4 ensures that S′ may
pass or passes the SIR relation test. If S′ passes the SIR relation test, we stop. If S′ may pass the SIR relation test,
we repeat the process until we obtain an ISS that passes the test. Since the transition set is finite, in the worst case, we
will continue with the process until obtaining an ISS with an empty set of eliminable candidates. If this ISS may pass
the SIR-relation test we get a contradiction with the fact that the set of eliminable candidates is empty, then this ISS
has to pass the test. Finally, −→χ is composed by the set of transitions removed along the way. �

6 Concluding remarks

In this work, we have presented semantics for interactive sequential systems. In this way we have extended the work
of [1] and [2] to models where the control of the actions is shared by the user and the system. To reduce complexity,
we did not include all types of observations presented in [2], thus limiting ourselves to work with a subset of them.
We do not foresee major problems in extending our theory to the types of observations we left out.

The approach to define non-interference security properties through types of observations gives important insight
about the security model, in particular about the characteristics of the attacker. For instance, if the attacker can
make use of the covert channels, then the type of observation ε should be chosen. Another example is the type of
observation F which can be interpreted as the system detecting an attack and aborting the execution. In this way, the
types of observations define a catalogue to characterize the attackers that could be considered.

This general definition encloses previous definitions of non-interference for ISS. We found notions of observability
to represent (S)NNI, B(S)NNI and SIR-(S)NNI (Theorem 1 and Lemma 2). This approach also provides a better
understanding of the security properties. In [9], SIR-(S)NNI is introduced to resolve some shortcomings found in
B(S)NNI, but in fact, these shortcomings do not exist because the properties should be considered in a different context.
B(S)NNI should be considered in a context where an attacker can only observes how the system behaves. On the other
hand, SIR-(S)NNI should be considered in a context where the attacker can interact through the interface. This is
obvious when we see the notions of observability used to represent each property: {a,T, ε6 ,�6 ,

∧
,¬} for B(S)NNI

and {a,T, ε6 ,RT ,
∧
} for SIR-(S)NNI. Notice that B(S)NNI has the no interaction type (�6 ) while in SIR-(S)NNI the

interaction is explicit due to the type (RT ).
In addition, the different types of observations provide a simple way to chose the appropriate notion of security.

For example notice interface S in Figure 5. One could argue that still there is an information leakage, because the
execution of action a! is an evidence that the high user has not interacted with the interface. If this information is
sensitive and the attacker interacts with the interface, one could use the notion of observability V = {a,T, ε6 ,RT ,

∧
,¬}

to detect this kind of problem. Notice this notion of observability is stronger than the notion used for B(S)NNI.
Future Works. We have identified two different research lines to continue this work. At first place, the types of

observations presented in [2] that have been omitted, have to be addressed, and a deep study comparing the different
semantics should be carried out to get a better understanding of them. Second, we also plan to study how the new
semantics for interactive systems affect the different models with both input/controllable and output/uncontrollable
actions and the results obtained for them.
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