
A Statistical Model Checker
for Nondeterminism and Rare Events

Carlos E. Budde1, Pedro R. D’Argenio2,3,4, Arnd Hartmanns1(B),
and Sean Sedwards5

1 University of Twente,
Enschede, The Netherlands

{c.e.budde,a.hartmanns}@utwente.nl
2 Universidad Nacional de Córdoba,

Córdoba, Argentina
dargenio@famaf.unc.edu.ar

3 CONICET, Córdoba, Argentina
4 Saarland University, Saarbrücken, Germany
5 University of Waterloo, Waterloo, Canada

sean.sedwards@uwaterloo.ca

Abstract. Statistical model checking avoids the state space explosion
problem in verification and naturally supports complex non-Markovian
formalisms. Yet as a simulation-based approach, its runtime becomes
excessive in the presence of rare events, and it cannot soundly analyse
nondeterministic models. In this tool paper, we present modes: a sta-
tistical model checker that combines fully automated importance split-
ting to efficiently estimate the probabilities of rare events with smart
lightweight scheduler sampling to approximate optimal schedulers in non-
deterministic models. As part of the Modest Toolset, it supports a
variety of input formalisms natively and via the Jani exchange format.
A modular software architecture allows its various features to be flexibly
combined. We highlight its capabilities with an experimental evaluation
across multi-core and distributed setups on three exemplary case studies.

1 Introduction

Statistical model checking (SMC [30,49]) is a formal verification technique for
stochastic systems. Using a formal stochastic model, specified as e.g. a continuous-
timeMarkov chain (CTMC)or a stochasticPetri net (SPN), SMCcan answer ques-
tions such as “what is the probability of system failure between two inspections” or
“what is the expected time to complete a given workload”. It is gaining popularity
for complex applicationswhere traditional exhaustive probabilisticmodel checking
is limitedby the state space explosionproblemandby its inability to efficiently han-
dle non-Markovian formalisms or complex continuous dynamics. At its core, SMC

This work is supported by the 3TU.BSR project, ERC grant 695614 (POWVER), the
JST ERATO HASUO Metamathematics for Systems Design project (JPMJER1603),
the NWO SEQUOIA project, and SeCyT-UNC projects 05/BP12 and 05/B497.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 340–358, 2018.
https://doi.org/10.1007/978-3-319-89963-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_20&domain=pdf

A Statistical Model Checker for Nondeterminism and Rare Events 341

is the integration of classical Monte Carlo simulation with formal models. By only
sampling concrete traces of the model’s behaviour, its memory usage is effectively
constant in the size of the state space, and it is applicable to any behaviour that
can effectively be simulated.

The result of an SMC analysis is an estimate q̂ of the actual quantity q together
with a statistical statement on the potential error. A typical guarantee is that, with
probability δ, any q̂ will be within ± ε of q. To strengthen such a guarantee, i.e.
increase δ or decrease ε, more samples (that is, simulation runs) are needed. Com-
pared toexhaustivemodel checking,SMCthus tradesmemoryusage foraccuracyor
runtime. A particular challenge lies in rare events, i.e. behaviours of very low prob-
ability. Meaningful estimates need a small relative error: for a probability on the
order of 10−19, for example, ε should reasonably be on the order of 10−20. In a stan-
dard Monte Carlo approach, this would require infeasibly many simulation runs.

SMC naturally works for formalisms with non-Markovian behaviour and com-
plex continuous dynamics, such as generalised semi-Markov processes (GSMP)
and stochastic hybrid Petri nets with many generally distributed transitions [42],
for which the exact model checking problem is intractable or undecidable. As a
simulation-based approach, however, SMC is incompatible with nondeterminism.
Yet (continuous and discrete) nondeterministic choices are desirable in formal
modelling for concurrency, abstraction, and to represent absence of knowledge.
They occur in many formalisms such as Markov decision processes (MDP) or
probabilistic timed automata (PTA [38]). In the presence of nondeterminism,
quantities of interest are defined w.r.t. optimal schedulers (also called policies,
adversaries or strategies) that resolve all nondeterministic choices: the verifica-
tion result is the maximum or minimum probability or expected value ranging
over all schedulers. Many SMC tools that appear to support nondeterministic
models as input, e.g. Prism [37] and Uppaal smc [14], implicitly use a single
hidden scheduler by resolving all choices randomly. Results are thus only guaran-
teed to lie somewhere between minimum and maximum. Such implicit resolutions
are a known problem affecting the trustworthiness of simulation studies [36].

In this paper, we present a statistical model checker, modes, that addresses
both of the above challenges: It implements importance splitting [45] to efficiently
estimate the probabilities of rare events and lightweight scheduler sampling [39]
to statistically approximate optimal schedulers. Both methods can be combined
to perform rare event simulation for nondeterministic models.

Rare Event Simulation. The key challenge in rare event simulation (RES) is
to achieve a high degree of automation for a general class of models. Current
approaches to automatically derive the importance function for importance split-
ting,which is critical for themethod’s performance, aremostly limited to restricted
classes of models and properties, e.g. [7,18]. modes combines several importance
splitting techniques with the compositional importance function construction of
Budde et al. [5] and two different methods to derive levels and splitting factors [4].
These method combinations apply to arbitrary stochastic models with a partly
discrete state space. We have shown them to work well across different Marko-
vian and non-Markovian automata- and dataflow-based formalisms [4].Wepresent
details on modes’ support for RES in Sect. 3. Alongside Plasma lab [40], which

342 C. E. Budde et al.

implements automatic importance sampling [33] and semi-automatic importance
splitting [32,34] for Markov chains (with APIs allowing for extensions to other
models),modes is one of the most automated tools for RES on formal models today.
In particular, we are not aware of any other tool that provides fully automated RES
on general stochastic models.

Nondeterminism. Sound SMC for nondeterministic models is a hard problem. For
MDP, Brázdil et al. [3] proposed a sound machine learning technique to incremen-
tally improve a partial scheduler. Uppaal Stratego [13] explicitly synthesises
a “good” scheduler before using it for a standard SMC analysis. Both approaches
suffer from worst-case memory usage linear in the number of states as all scheduler
decisions must be stored explicitly. Classic memory-efficient sampling approaches
like the one of Kearns et al. [35] address discounted models only.modes implements
the lightweight scheduler sampling (LSS) approach introduced by Legay et al. [39].
It is currently the only technique that applies to reachability probabilities and
undiscounted expected rewards—as typically considered in formal verification—
that also keeps memory usage effectively constant in the number of states. Its effi-
ciency depends only on the likelihood of sampling near-optimal schedulers. modes
implements the existing LSS approaches for MDP [39] and PTA [10,26] and sup-
ports unbounded properties on Markov automata (MA [16]). We describe modes’
LSS implementation in Sect. 4.

The modes Tool. modes is part of the Modest Toolset [24], which also includes
the explicit-state model checker mcsta and the model-based tester motest [21].
It inherits the toolset’s support for a variety of input formalisms, including the
high-level process algebra-based Modest language [22] and xSADF [25], an
extension of scenario-aware dataflow. Many other formalisms are supported via
the Jani interchange format [6]. As simulation is easily and efficiently parallelis-
able, modes fully exploits multi-core systems, but can also be run in a distributed
fashion across homogeneous or heterogeneous clusters of networked systems. We
describe the various methods implemented to make modes a correct and scalable
statistical model checker that supports classes of models ranging from CTMC
to stochastic hybrid automata in Sect. 2. We focus on its software architecture
in Sect. 5. Finally, Sect. 6 uses three very different case studies to highlight the
varied kinds of models and analyses that modes can handle.

Previous Publications. modes was first described in a tool demonstration paper in
2012 [2]. Its focus was on the use of partial order and confluence reduction-based
techniques [27] to decide on-the-fly if the nondeterminism in amodel is spurious, i.e.
whether maximum and minimum values are the same and an implicit randomised
scheduler can safely be used. modes was again mentioned as a part of the Modest

Toolset in 2014 [24]. Since then, modes has been completely redesigned. The
partial order and confluence-based methods have been replaced by LSS, enabling
the simulation of non-spurious nondeterminism; automated importance splitting
has been implemented for rare event simulation; support for MA and a subset of
stochastic hybrid automata (SHA [22]) has been added; and the statistical evalu-
ation methods have been extended and improved. Concurrently, advances in the
shared infrastructure of theModestToolset, now at version 3, provide access to
newmodelling features and formalisms aswell as support for theJani specification.

A Statistical Model Checker for Nondeterminism and Rare Events 343

2 Ingredients of a Statistical Model Checker

A statistical model checker performs a number of tasks to analyse a given formal
model w.r.t. to a property of interest. In this section, we describe these tasks,
their challenges, and how modes implements them. All random selections in an
SMC tool are typically resolved by a pseudo-random number generator (PRNG).
For brevity, we write “random” to mean “pseudo-random” in this section.

Simulating Different Model Types. The most basic task is simulation: the gen-
eration of random samples—simulation runs—from the probability distribution
over behaviours defined by the model. modes contains simulation algorithms
specifically optimised for the following types of models:

– For deterministic MDP (Markov decision processes), i.e. DTMC (discrete-
time Markov chains), simulation is simple and efficient: Obtain the current
state’s probability distribution over successors, randomly select one of them
(using the distribution’s probabilities), and continue from that state.

– Deterministic MA (Markov automata [16]) are CTMC. Here, the situation is
similar: Obtain the set of enabled outgoing transitions, randomly select a delay
from the exponential distribution parameterised by the sum of their rates, then
make a random selection of one transition weighted by the transitions’ rates.

– PTA (probabilistic timed automata [38]) extend MDP with clock variables,
transition guards and location invariants as in timed automata. Like MA,
they are a continuous-time model, but explicitly keep a memory of elapsed
times in the clocks. They admit finite-state abstractions that preserve reacha-
bility probabilities and allow them to essentially be simulated as MDP. modes
implements region graph- and zone-based simulation of PTA as MDP [10,26].
With fewer restrictions, they can also be treated as SHA:

– SHA extend PTA with general continuous probability distributions and con-
tinuous variables with dynamics governed by differential equations and inclu-
sions. modes supports deterministic SHA where all differential equations are
of the form v̇ = e for a continuous variable v and an expression e over discrete
variables. This subset can be simulated without the need for approximations;
it corresponds to deterministic rectangular hybrid automata [29]. For each
transition, the SHA simulator needs to compute the set of time points at
which it is enabled. These sets can be unions of several disjoint intervals,
which results in relatively higher computational effort for SHA simulation.

Properties and Termination. SMC computes a value for the property on every
simulation run. A run is a finite trace; consequently, standard SMC only works
for linear-time properties that can be decided on finite traces. modes supports

– transient (reachability) queries of the form P(¬avoid Ugoal) for the proba-
bility of reaching a set of states characterised by the state formula goal before
entering the set of states characterised by state formula avoid , and

– expected reward queries of the form E(reward | goal) for the expected
accumulated reward (or cost) over the reward structure reward when reaching
a location in the set of states characterised by goal for the first time.

344 C. E. Budde et al.

Transient queries may be time- and reward-bounded. A state formula is an
expression over the (discrete and continuous) variables of the model without
any temporal operators. A reward structure assigns a rate reward r(s) ∈ R to
every state s and a branch reward r(b) ∈ R to every probabilistic branch b of
every transition. An example transient query is “what is the probability to reach
a destination (goal) within an energy budget (a reward bound) while avoiding
collisions (avoid)”. Expected reward queries allow asking for e.g. the expected
number of retransmissions (the reward) until a message is successfully transmit-
ted (goal) in a wireless network protocol. Every query q can be turned into a
requirement q ∼ c by adding a comparison ∼∈ {≤,≥ } to a constant value c ∈ R.

A simulation run ends when the value of a property is decided. For transient
properties, this is the case when reaching an avoid state or a deadlock (value 0),
or a goal state (value 1). To ensure termination, the probability of eventually
encountering one of these events must be 1. modes additionally implements cycle
detection: it keeps track of a configurable number n of previous visited states.
When a run returns to a previous state without intermediate steps of probability
<1, it will loop forever on this cycle and the run has value 0. modes uses n = 1 by
default for good performance while still allowing models built for model checking,
which avoid deadlocks but often contain terminal states with self-loops, to be
simulated. For expected rewards, when entering a goal state, the property is
decided with the value being the sum of the rewards along the run.

Statistical Evaluation of Samples. n simulation runs provide a sequence of inde-
pendent values v1, . . . , vn for the property. v̂n = 1

n

∑n
i=1 vi is an unbiased esti-

mator of the actual probability or expected reward v. An SMC tool must stop
generating runs at some point, and quantify the statistical properties of the
estimate v̂ = v̂n returned to the user. modes implements the following methods:

– For a given half-width w and confidence δ, the CI method returns a confidence
interval [x, y] that contains v̂, with y − x = 2 · w. Its guarantee is that, if the
SMC analysis is repeated many times, 100 ·δ % of the confidence intervals will
contain v. For transient properties, where the vi are sampled from a Bernoulli
distribution, modes constructs a binomial proportion confidence interval. For
expected rewards, the underlying distribution is unknown, and modes uses the
standard normal (or Gaussian) confidence interval. This relies on the central
limit theorem for means, assuming a “large enough” n. modes requires n ≥ 50
as a heuristic. modes requires the user to specify δ plus either of w and n. If n
is not specified, the CI method becomes a sequential procedure: generate runs
until the with of the interval for confidence δ is below 2·w. The CI method can
be turned into a hypothesis test for requirements q ∼ c by checking whether
v̂ ≥ y or v̂ ≤ x, and returning undecided if v̂ is inside the interval. When n
is unspecified, this is the Chow-Robbins sequential test [44]. Finally, modes
can be instructed to interpret the value of w as a relative half-width, i.e. the
final interval will have width v̂ · 2 · w. This is useful for rare events.

– The APMC [30] method, based on the Okamoto bound [41], guarantees for
error ε and confidence δ that P(|v̂−v| > ε) < δ. It only applies to the Bernoulli-
distributed samples for transient properties here. modes requires the user to

A Statistical Model Checker for Nondeterminism and Rare Events 345

specify any two of ε, δ and n, out of which the missing value can be computed.
The APMC method can be used as a hypothesis test for P(·) ∼ c by checking
whether v̂ ≥ c + ε or v̂ ≤ c − ε, and returning undecided if neither is true.

– modes also implements Wald’sSPRT, the sequential probability ratio test [47].
As a sequential hypothesis test, it has no predetermined n, but decides on-the-
fly whether more samples are needed as they come in. It is a test for Bernoulli-
distributed quantities, i.e. it only applies to transient requirements of the form
P(·) ∼ c. For indifference level ε and error α, it stops when the collected samples
so far provide sufficient evidence to decide between P(·) ≥ c + ε or P(·) ≤ c − ε
with probability ≤α of wrongly accepting either hypothesis.

For a more detailed description of these and other statistical methods and espe-
cially hypothesis tests for SMC, we refer the interested reader to [44].

Distributed Sample Generation. Simulation is easily and efficiently parallelisable.
Yet a näıve implementation of the statistical evaluation—processing the values
from the runs in the order they flow in—risks introducing a bias in a parallel
setting. Consider estimating the probability of system failure when simulation
runs that encounter failure states are shorter than other runs, and thus quicker.
In parallel simulation, failure runs will tend to arrive earlier and more frequently,
thus overestimating the probability of failure. To avoid such bias, modes uses the
adaptive schedule first implemented in Ymer [48]. It adapts to differences in the
speed of nodes by scheduling to process more future results from fast nodes when
current results come in quickly. It always commits to a schedule a priori before
the actual results arrive, ensuring the absence of bias. It is thus well-suited for
heterogeneous clusters of machines with significant performance differences.

3 Automated Rare Event Simulation

With the standard confidence of δ = 0.95, we have n ≈ 0.37/ε2 in the APMC
method: for every decimal digit of precision, the number of runs increases by a
factor of 100. If we attempt to estimate probabilities on the order of 10−4, i.e.
ε ≈ 10−5, we need billions of runs and days or weeks of simulation time. This
is the problem tackled by rare event simulation (RES) techniques [45]. modes
implements RES for transient properties via importance splitting, which itera-
tively increases the simulation effort for states “closer” to the goal set. Closeness
is represented by an importance function fI : S → N that maps each state in S to
its importance in { 0, . . . ,max fI }. The performance, but not the correctness, of
all splitting methods hinges on the quality of the importance function.

Deriving Importance Functions. Traditionally, the importance function is spec-
ified ad hoc by a RES expert. Striving for usability by domain experts, modes
implements the compositional importance function generation method of [5] that
is applicable to any compositional stochastic model M = M1 ‖ . . . ‖ Mn with a
partly discrete state space. We write s|i for the projection of state s of M to the
discrete local variables of component Mi. The method works as follows [4]:

346 C. E. Budde et al.

Fig. 1. Illustration of Restart [4] Fig. 2. Illustration of fixed effort [4]

1. Convert the goal set formula goal to negation normal form (NNF) and asso-
ciate each literal goal j with the component M(goal j) whose local state variables
it refers to. Literals must not refer to multiple components.

2. Explore the discrete part of the state space of each component Mi. For each
goal j with Mi = M(goal j), use reverse breadth-first search to compute the local
minimum distance f j

i (s|i) of each state s|i to a state satisfying goal j .
3. In the syntax of the NNF of goal , replace every occurrence of goal j by f j

i (s|i)
with i such that Mi = M(goal j), and every Boolean operator ∧ or ∨ by +. Use
the resulting formula as the importance function fI(s).

The method takes into account both the structure of the goal set formula and
the structure of the state space. This is in contrast to the approach of Jégourel et
al. [32], implemented in a semi-automated fashion in Plasma lab [34,40], that
only considers the structure of the (more complex linear-time) logical property.
The memory usage of the compositional method is determined by the number
of discrete local states (required to be finite) over all components. Typically,
component state spaces are small even when the composed state space explodes.

Levels and Splitting Factors. We also need to specify when and how much to
“split”, i.e. increase the simulation effort. For this purpose, the values of the
importance function are partitioned into levels and a splitting factor is chosen for
each level. Splitting too much too often will degrade performance (oversplitting),
while splitting too little will cause starvation, i.e. few runs that reach the rare
event. It is thus critical to choose good levels and splitting factors. Again, to avoid
the user having to make these choices ad hoc, modes implements two methods
to compute them automatically. One is based on the sequential Monte Carlo
splitting technique [8], while the other method, named expected success [4], has
been newly developed for modes. It strives to find levels and factors that lead to
one run moving up from one level to the next in the expectation.

Importance Splitting Runs. The derivation of importance function, levels and
splitting factors is a preprocessing step. Importance splitting then replaces the
simulation algorithm by a variant that takes this information into account to

A Statistical Model Checker for Nondeterminism and Rare Events 347

more often encounter the rare event. modes implements three importance split-
ting techniques: Restart, fixed effort and fixed success.

Restart [46] is illustrated in Fig. 1: As soon as a Restart run crosses the
threshold into a higher level, n�−1 new child runs are started from the first state
in the new level, where n� is the splitting factor of level �. When a run moves
below its creation level, it ends. It also ends on reaching an avoid or goal state.
The result of a Restart run—consisting of a main and several child runs—is
the number of runs that reach goal times 1/

∏
� n�, i.e. a rational number ≥ 0.

Runs of the fixed effort method [17,19], illustrated in Fig. 2, are rather differ-
ent. They consist of a fixed number of partial runs on each level, each of which
ends when it crosses into the next higher level or encounters a goal or avoid state.
When all partial runs for a level have ended, the next round starts from the pre-
viously encountered initial states of the next higher level. When a fixed effort run
ends, the fraction of partial runs started in a level that moved up approximates
the conditional probability of reaching the next level given that the current level
was reached. If goal states exist only on the highest level, the overall result is
the product of all of these fractions, i.e. a rational number in [0, 1].

Fixed success [1] is a variant of fixed effort that generates partial runs until a
fixed number of them have reached the next higher level. For all three methods,
the average of the result of many runs is again an unbiased estimator for the
probability of the transient property [19]. However, each run is no longer a
Bernoulli trial. Of the statistical evaluation methods offered by modes, only CI
with normal confidence intervals is thus applicable. For a deeper discussion of the
challenges in the statistical evaluation of rare event simulation results, we refer
the interested reader to [43]. To the best of our knowledge, modes is today the
most automated rare event simulator for general stochastic models. In particular,
it defaults to the combination of Restart with the expected success method
for level calculation, which has shown consistently good performance [4].

4 Scheduler Sampling for Nondeterminism

Resolving nondeterminism in a randomised way leads to estimates that only lie
somewhere between the desired extremal values. In addition to computing prob-
abilities or expected rewards, we also need to find a (near-)optimal scheduler.

Lightweight Scheduler Sampling. modes implements the lightweight scheduler
sampling (LSS) approach for MDP of [39] that identifies a scheduler by a sin-
gle integer (typically of 32 bits). This allows to randomly select a large number
m of schedulers (i.e. integers), perform standard or rare event simulation for
each, and report the maximum and minimum estimates over all sampled sched-
ulers as approximations of the actual extremal values. We show the core of the
lightweight approach—performing a simulation run for a given scheduler identi-
fier σ—for MDP and transient properties as Algorithm 1. An MDP consists of
a countable set of states S, a transition function T that maps each state to a
finite set of probability distributions over successor states, and an initial state

348 C. E. Budde et al.

Input: MDP 〈S, T, s0〉, transient property φ, scheduler id σ ∈ Z

1 s := s0, π := s0
2 while φ(π) = undecided do
3 Und.initialise(H(σ.s)) // use hash of σ and s as seed for Und

4 if T (s) = ∅ then return false // end of run due to deadlock
5 μ := �Und · |T (s)|�-th element of T (s) // use Und to select transition
6 s′ := μ ◦ Upr.next() // use Upr to select successor state according to μ
7 π := π.s′, s := s′ // append s′ to π and continue from s′

8 return φ(π)

Algorithm 1. Simulation for an MDP and a fixed scheduler id [10]

s0. The algorithm uses two PRNG: Upr to simulate the probabilistic choices (line
6), and Und to resolve the nondeterministic ones (line 5). We want σ to represent
a deterministic memoryless scheduler: within one simulation run as well as in
different runs for the same value of σ, Und must always make the same choice for
the same state s. To achieve this, Und is re-initialised with a seed based on σ and
s in every step (line 3). The overall effectiveness of the lightweight approach only
depends on the likelihood of selecting a σ that represents a (near-)optimal sched-
uler. We want to sample “uniformly” from the space of all schedulers to avoid
actively biasing against “good” schedulers. Algorithm 1 achieves this naturally
for MDP.

Beyond MDP. LSS can be adapted to any model and type of property where
the class of optimal schedulers only uses discrete input to make its decision
for every state [26]. This is obviously the case for discrete-space discrete-time
models like MDP. It means that LSS can directly be applied to MA and time-
unbounded properties, too. In addition to MDP and MA, modes also supports
two LSS methods for PTA, based on a variant of forwards reachability with
zones [10] and the region graph abstraction [26], respectively. While the former
includes zone operations with worst-case runtime exponential in the number of
clocks, the latter implements all operations in linear time. It exploits a novel data
structure for regions based on representative valuations that performs very well
in practice [26]. Extending LSS to models with general continuous probability
distributions such as stochastic automata [11] is hindered by optimal sched-
ulers requiring non-discrete information (the values and expiration times of all
clocks [9]). modes currently provides prototypical LSS support for SA encoded in
a particular form and various restricted classes of schedulers as described in [9].

Bounds and Error Accumulation. The results of an SMC analysis with LSS are
lower bounds for maximum and upper bounds for minimum values up to the
specified statistical error and confidence. They can thus be used to e.g. disprove
safety (the maximum probability to reach an unsafe state is above a threshold)
or prove schedulability (there is a scheduler that makes it likely to complete
the workload in time), but not the opposite. The accumulation of statistical

A Statistical Model Checker for Nondeterminism and Rare Events 349

error introduced by the repeated simulation experiments over multiple sched-
ulers must also be accounted for. [12] shows how to modify the APMC method
accordingly and turn the SPRT into a correct sequential test over schedulers. In
addition to these, modes allows the CI method to be used with LSS by applying
the standard Šidák correction for multiple comparisons. This enables LSS for
expected rewards and RES. All the adjustments essentially increase the required
confidence depending on the (maximum) number of schedulers to be sampled.

Two-Phase and Smart Sampling. If an SMC analysis for fixed statistical param-
eters would need n runs on a deterministic model, it will need significantly more
than m · n runs for a nondeterministic model when m schedulers are sampled
due to the increase in the required confidence. modes implements a two-phase
approach and smart sampling [12] to reduce this overhead. The former’s first
phase consists of performing n simulation runs for each of the m schedulers. The
scheduler that resulted in the maximum (or minimum) value is selected, and
independently evaluated once more with n runs to produce the final estimate.
The first phase is a heuristic to find a near-optimal scheduler before the second
phase estimates the value under this scheduler according to the required statis-
tical parameters. Smart sampling generalises this principle to multiple phases,
dropping only the “worst” half of the evaluated schedulers between phases. It
starts with an informed guess of good initial values for n and m. For details,
see [12]. Smart sampling tends to find more extremal schedulers faster while the
two-phase approach has predictable performance as it always needs (m + 1) · n
runs. We thus use the two-phase approach for our experiments in Sect. 6.

5 Architecture and Implementation

modes is implemented in C# and works on Linux, Mac OS X and Windows sys-
tems. It builds on a solid foundation of shared infrastructure with other tools of
the Modest Toolset. This includes input language parsers that map Modest,
xSADF and Jani input into a common internal metamodel for networks of
stochastic hybrid automata with rewards and discrete variables. Before simu-
lation, every model is compiled to bytecode, making the metamodel executable.
The same compilation engine is also used by the mcsta and motest tools.

The architecture of the SMC-specific part of modes is shown as a class dia-
gram in Fig. 3. Boxes represent classes, with rounded rectangles for abstract
classes and invisible boxes for interfaces. Solid lines are inheritance relations.
Dotted lines are associations, with double arrows for collection associations. The
architecture mirrors the three distinct tasks of a statistical model checker: the
generation of individual simulation runs and per-run evaluation of properties,
implemented in modes by RunGenerator and RunEvaluator, respectively; the
coordination of simulation over multiple threads across CPU cores and networked
machines, implemented by classes derived from Worker and IWorkerHost ; and
the statistical evaluation of simulation runs, implemented by PropertyEvaluator.

The central component of modes’ architecture is the Master. It compiles the
model, derives the importance function, sends both to the workers (on the same

350 C. E. Budde et al.

Fig. 3. The software architecture of the modes statistical model checker

or different machines), and instantiates a PropertiesJob for every partition of the
properties to be analysed that can share simulation runs.1 Each PropertiesJob
then posts simulation jobs back to the master in parallel or in sequence. A simu-
lation job is a description of how to generate and evaluate runs: which run type
(i.e. RunGenerator derived class) to use, whether to wrap it in an importance

1 Using the same set of runs for multiple properties is an optimisation at the cost of
statistical independence. modes can also generate independent runs for each property.

A Statistical Model Checker for Nondeterminism and Rare Events 351

splitting method, whether to simulate for a specific scheduler id, which compiled
expressions to evaluate to determine termination and the values of the runs, etc.
The master allocates posted jobs to available simulation threads offered by the
workers, and notifies workers when a job is scheduled for one of their threads.
As the result for an individual run is handed from the RunEvaluator by the
RunGenerator via the workers to the master, it is fed into a Sequentialiser that
implements the adaptive schedule for bias avoidance. Only after that, possibly
at a later point, is it handed on to the PropertiesJob for statistical evaluation.

For illustration, consider a PropertiesJob for LSS with 10 schedulers, RES
with Restart, and the expected success method for level calculation. It is given
the importance function by the master, and its first task is to compute the levels.
It posts a simulation job for fixed effort runs with level information collection to
the master. Depending on the current workload from other PropertiesJobs, the
master will allocate many threads to this job. Once enough results have come
in, the PropertiesJob terminates the simulation job, computes the levels and
splitting factors, and starts with the actual simulations: It selects 10 random
scheduler identifiers and concurrently posts for each of them a simulation job for
Restart runs. The master will try to allocate available threads evenly over these
jobs. As results come in, the evaluation may finish early for some schedulers, at
which point the master will be instructed to stop the corresponding simulation
job. It can then allocate the newly free threads to other jobs. This scheme results
in a maximal exploitation of the available parallelism across workers and threads.

Due to the modularity of this architecture, it is easy to extend modes in
different ways. For example, to support a new type of model (say, non-linear
hybrid automata) or a new RES method, only a new (I)RunGenerator needs to
be implemented. Adding another statistical evaluation method from [44] means
adding a new PropertyEvaluator, and so on.

In distributed simulation, an instance of modes is started on each node with
the --server parameter. This results in the creation of an instance of the Server
class instead of a Master, which listens for incoming connections. Once all servers
are running, a master can be started with a list of hosts to connect to. modes
comes with a template script to automate this task on slurm-based clusters.

6 Experiments

We present three case studies in this section. They have been chosen to highlight
modes’ capabilities in terms of the diverse types of models it supports, its ability
to distribute work across compute clusters, and the new analyses possible with
RES and LSS. None of them has been studied before with modes or the combi-
nations of methods that we apply here. Our experiments ran on an Intel Core
i7-4790 workstation (3.6–4.0 GHz, 4 cores), a homogeneous cluster of 40 AMD
Opteron 4386 nodes (3.1–3.8 GHz, 8 cores), and an inhomogeneous cluster of 15
nodes with different Intel Xeon processors. All systems run 64-bit Linux. We use
1, 2 or 4 simulation threads on the workstation (denoted “1”, “2” and “4” in
our tables), and n nodes with t simulation threads each on the clusters (denoted

352 C. E. Budde et al.

Table 1. Performance and scalability on the electric vehicle charging case study

nfail = 2 nfail = 3 nfail = 4 nfail = 5
MC RES MC RES MC RES MC RES

conf. interval [6.4e–2, 7.8e–2] [5.2e–3, 6.4e–3] [2.7e–4, 3.2e–4] [8.3e–6, 1.0e–5]

1 2 s 4 s 30 s 19 s 585 s 206 s

—2 1 s 2 s 15 s 11 s 315 s 101 s

4 1 s 1 s 8 s 5 s 163 s 69 s

5 × 4 1 s 1 s 4 s 4 s 69 s 23 s 2241 s 496 s

5 × 8 1 s 2 s 2 s 3 s 40 s 16 s 1238 s 328 s

40 × 2 0 s 1 s 1 s 2 s 16 s 8 s 483 s 135 s

20 × 8 0 s 2 s 1 s 2 s 10 s 6 s 314 s 105 s

40 × 8 0 s 2 s 1 s 3 s 5 s 6 s 159 s 64 s

“n × t”). We used a one-hour timeout, marked “—” in the tables. Note that
runtimes cannot directly be compared between the workstation and the clusters.

Electric Vehicle Charging. We first consider a model of an electric vehicle charg-
ing station. It is a Modest model adapted from the “extended” case study
of [42]: a stochastic hybrid Petri net with general transitions, which in turn is
based on the work in [31]. The scenario we model is of an electric vehicle being
connected to the charger every evening in order to be recharged the next morn-
ing. The charging process may be delayed due to high load on the power grid, and
the exact time at which the vehicle is needed in the morning follows a normal
distribution. We consider one week of operation and compute the probability
that the desired level of charge is not reached on any nfail ∈ { 2, . . . , 5 } of the
seven mornings.

This model is not amenable to exhaustive model checking due to the non-
Markovian continuous probability distributions and the hybrid dynamics mod-
elling the charging process. However, it is deterministic. We thus applied modes
with standard Monte Carlo simulation (MC) as well as with RES using Restart.
We performed the same analysis on different configurations of the workstation
and the homogeneous cluster. To compare MC and RES, we use CI with δ = 0.95
and a relative half-with of 10% for both. All other parameters of modes are set
to default values, which implies an automatic compositional importance function
and the expected success method to determine levels and splitting factors. The
results are shown in Table 1. Row “conf. interval” gives the average confidence
intervals that we obtained over all experiments.

RES starts to noticeably pay off as soon as probabilities are on the order of
10−4. The runtime of Restart is known to heavily depend on the levels and
splitting factors, and we indeed noticed large variations in runtime for RES over
several repetitions of the experiments. The runtimes for RES should thus not be
used to judge the speedup w.r.t. parallelisation. However, when looking at the
MC runtimes, we see good speedups as we increase the number of threads per
node, and near-ideal speedups as we increase the total number of nodes, as long
as there is a sufficient amount of work.

A Statistical Model Checker for Nondeterminism and Rare Events 353

Table 2. Performance and results for the low-latency wireless network case study

time P(i < 4 U failed) P(i < 4 U offline{1}) P(i < 4 U offline{2})
optimal [0.028, 0.472] [0.026, 0.269] [0 , 0.424]

1 100 3523 s

[0.041, 0.363] [0.030, 0.189] [0.000, 0.309]2 100 2045 s

4 100 1205 s

20 × 8 1000 607 s
[0.033, 0.383] [0.028, 0.242] [0.000, 0.327]

40 × 8 1000 308 s

Although this model was not designed with RES in mind and has only mod-
erately rare events, the fully automated methods of modes could be applied
directly, and they significantly improved performance. For a detailed experimen-
tal comparison of the RES methods implemented in modes on a larger set of
examples, including events with probabilities as low as 4.8 · 10−23, we refer the
reader to [4].

Low-latency Wireless Networks. We now turn to the PTA model of a low-latency
wireless networking protocol being used among three stations, originally pre-
sented in [15]. We take the original model, increase the probability of message
loss, and make one of the communication links nondeterministically drop mes-
sages. This allows us to study the influence of the message loss probabilities and
the protocol’s robustness to adversarial interference. The model is amenable to
model checking, as demonstrated in [15]. It allows us to show that modes can
be applied to such models originally built for traditional verification, and since
we can calculate the precise maximum and minimum values of all properties via
model checking, we have a reference to evaluate the results of LSS.

We show the results of using modes with LSS on this model in Table 2. Row
“optimal” lists the maximum and minimum probabilities computed via model
checking for three properties: the probability that the protocol fails within four
iterations, and that either the first or the second station goes offline. We used
the two-phase LSS method with m = 100 schedulers on the workstation, and
with m = 1000 schedulers on the homogeneous cluster. The intervals are the
averages of the min. and max. values returned by all analyses. The statistical
evaluation is APMC with δ = 0.95 and ε = 0.0025, which means that 59556
simulation runs are needed per scheduler.

Near-optimal schedulers for the minimum probabilities do not appear to be
rare: we find good bounds for the minima even with 100 schedulers. However,
for maximum probabilities, sampling more schedulers pays off in terms of better
approximations. In all cases, the results are conservative approximations of the
actual optima (as expected), and they are clearly more useful than the single
value that would be obtained by other tools via a (hidden) randomised scheduler.
Performance scales ideally with parallelism on the cluster, and still linearly on
the workstation. For a deeper evaluation of the characteristics of LSS, including
experiments on models too large for model checking, we refer the reader to the
description of the original approach [12,39] and its extensions to PTA [10,26].

354 C. E. Budde et al.

Table 3. Performance and results for the reliable database system case study

uniform scheduler lightweight scheduler sampling (20)
R MC RES conf. interval MC RES min. conf. int. max. conf. int.

2 1 s 4 s [1.5e–2, 1.8e–2] 4 s 31 s [1.4e–2, 1.7e–2] [1.5e–2, 1.9e–2]
3 8 s 3 s [1.0e–4, 1.3e–4] 181 s 26 s [7.9e–5, 9.6e–5] [1.3e–4, 1.6e–4]
4 816 s 13 s [9.3e–7, 1.1e–6]

—
221 s [6.3e–7, 7.6e–7] [1.3e–6, 1.6e–6]

5 — 229 s [1.1e–8, 1.3e–8] 3072 s [6.2e–9, 7.6e–9] [1.6e–8, 2.0e–8]

Redundant Database System. The redundant database system [20] is a classic
RES case study. It models a system consisting of six disk clusters of R + 2
disks each plus two types of processors and disk controllers with R copies of
each type. Component lifetimes are exponentially distributed. Components fail
in one of two modes with equal probability, each mode having a different repair
rate. The system is operational as long as fewer than R processors of each type,
R controllers of each type, and R disks in each cluster are currently failed. The
model is a CTMC with a state space too large and a transition matrix too dense
for it to be amenable to model checking with symbolic tools like Prism [37].

In the original model, any number of failed components can be repaired in
parallel. We consider this unrealistic, and extend the model by a repairman
that can repair a single component at a time. If more than one component fails
during a repair, then as soon as the current repair is finished, the repairman has
to decide which to repair next. Instead of enforcing a particular repair policy, we
leave this decision as nondeterministic. The model thus becomes an MA. We use
LSS in combination with RES to investigate the impact of the repair policy. We
study the scenario where one component of each kind (one disk, one processor,
one controller) is in failed state, and estimate the probability for system failure
before these components are repaired. The minimum probability is achieved by a
perfect repair strategy, while the maximum results from the worst possible one.

Table 3 shows the results of our LSS-plus-RES analysis with modes using
default RES parameters and sampling m = 20 schedulers. Due to the complexity
of the model, we ran this experiment on the inhomogeneous cluster only, using 16
cores on each node for 240 concurrent simulation threads in total. We see that
RES needs a somewhat rare event to improve performance. We also compare
LSS to the uniform randomised scheduler (as implemented in many other SMC
tools). It results in a single confidence interval for the probability of failure.
With LSS, we get two intervals. They do not overlap when R ≥ 3, i.e. the repair
strategy matters: a bad strategy makes failure approximately twice as likely as a
good strategy! Since the results of LSS are conservative, the difference between
the worst and the best strategy may be even larger.

Experiment Replication. To enable independent replication of our experimental
results, we have created a publicly available evaluation artifact [23]. It contains
the version of modes and the model files used for our experiments, the raw
experimental results, summarising tabular views of those results (from which we
derived Tables 1, 2 and 3), and a Linux shell script to automatically replicate a

A Statistical Model Checker for Nondeterminism and Rare Events 355

subset of the experiments. Since the complete experiments take several hours to
complete and require powerful hardware and computer clusters, we have selected
a subset for the replication script. Using the virtual machine of the TACAS
2018 Artifact Evaluation [28] on typical workstation hardware of 2017, it runs
to completion in less than one hour while still substantiating our main results.

7 Conclusion

We presented modes, the Modest Toolset’s distributed statistical model
checker. It provides methods to tackle both of the prominent challenges in simu-
lation: nondeterminism and rare events. Its modular software architecture allows
its various features to be easily combined and extended. For the first time, we
used lightweight scheduler sampling with Markov automata, and combined it
with rare event simulation to gain insights into a challenging case study that,
currently, cannot be analysed for the same aspects with any other tool that we
are aware of. modes is available for download at www.modestchecker.net.

Acknowledgments. The authors thank Carina Pilch and Sebastian Junges for their
support with the vehicle charging and wireless networks case studies.

Data Availability. The data generated in our experimental evaluation is archived
and available at DOI 10.4121/uuid:64cd25f4-4192-46d1-a951-9f99b452b48f [23].

References

1. Amrein, M., Künsch, H.R.: A variant of importance splitting for rare event esti-
mation: fixed number of successes. ACM Trans. Model. Comput. Simul. 21(2),
13:1–13:20 (2011)

2. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model check-
ing for Modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB&DFT
2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28540-0 20

3. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

4. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.)
SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69483-2 3

5. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: VALUETOOLS. ICST
(2016)

6. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

http://www.modestchecker.net/
http://doi.org/10.4121/uuid:64cd25f4-4192-46d1-a951-9f99b452b48f
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9

356 C. E. Budde et al.

7. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis.
Stochast. Anal. Appl. 25(2), 417–443 (2007)

8. Cérou, F., Moral, P.D., Furon, T., Guyader, A.: Sequential Monte Carlo for rare
event estimation. Stat. Comput. 22(3), 795–808 (2012)

9. D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of sched-
uler classes for stochastic automata. In: FoSSaCS. LNCS, vol. 10803. Springer
(2018, to appear)

10. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 7

11. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

12. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

13. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

15. Dombrowski, C., Junges, S., Katoen, J.P., Gross, J.: Model-checking assisted proto-
col design for ultra-reliable low-latency wireless networks. In: SRDS, pp. 307–316.
IEEE (2016)

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

17. Garvels, M.J.J., Kroese, D.P.: A comparison of RESTART implementations. In:
Winter Simulation Conference, pp. 601–608 (1998)

18. Garvels, M.J.J., van Ommeren, J.C.W., Kroese, D.P.: On the importance function
in splitting simulation. Eur. Trans. Telecommun. 13(4), 363–371 (2002)

19. Garvels, M.J.J.: The splitting method in rare event simulation. Ph.D. thesis, Uni-
versity of Twente, Enschede, The Netherlands (2000)

20. Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V.F., Glynn, P.W.: A unified
framework for simulating Markovian models of highly dependable systems. IEEE
Trans. Comput. 41(1), 36–51 (1992)

21. Graf-Brill, A., Hartmanns, A., Hermanns, H., Rose, S.: Modelling and certification
for electric mobility. In: Industrial Informatics (INDIN). IEEE (2017)

22. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des.
43(2), 191–232 (2013)

23. Hartmanns, A.: A Statistical Model Checker for Nondeterminism and Rare Events
(artifact). 4TU.Centre for Research Data (2018). http://doi.org/10.4121/uuid:
64cd25f4-4192-46d1-a951-9f99b452b48f

24. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

25. Hartmanns, A., Hermanns, H., Bungert, M.: Flexible support for time and costs
in scenario-aware dataflow. In: EMSOFT. ACM (2016)

https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
http://doi.org/10.4121/uuid:64cd25f4-4192-46d1-a951-9f99b452b48f
http://doi.org/10.4121/uuid:64cd25f4-4192-46d1-a951-9f99b452b48f
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51

A Statistical Model Checker for Nondeterminism and Rare Events 357

26. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifica-
tion of probabilistic timed automata. In: Winter Simulation Conference (2017)

27. Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using
partial order and confluence reduction. STTT 17(4), 429–456 (2015)

28. Hartmanns, A., Wendler, P.: TACAS 2018 Artifact Evaluation VM. Figshare
(2018). https://doi.org/10.6084/m9.figshare.5896615

29. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

30. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

31. Hüls, J., Remke, A.: Coordinated charging strategies for plug-in electric vehicles
to ensure a robust charging process. In: VALUETOOLS. ICST (2016)

32. Jégourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 38

33. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016)

34. Jégourel, C., Legay, A., Sedwards, S., Traonouez, L.M.: Distributed verification of
rare properties using importance splitting observers. In: ECEASST, vol. 72 (2015)

35. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learn. 49(2–3), 193–208
(2002)

36. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

37. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

38. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

39. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

40. Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma Lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 6

41. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)

42. Pilch, C., Remke, A.: Statistical model checking for hybrid Petri nets with multiple
general transitions. In: DSN, pp. 475–486. IEEE Computer Society (2017)

43. Reijsbergen, D., de Boer, P.-T., Scheinhardt, W.: Hypothesis testing for rare-event
simulation: limitations and possibilities. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 16–26. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47166-2 2

44. Reijsbergen, D., de Boer, P., Scheinhardt, W.R.W., Haverkort, B.R.: On hypothesis
testing for statistical model checking. STTT 17(4), 377–395 (2015)

45. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley, New York (2009)

https://doi.org/10.6084/m9.figshare.5896615
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-319-47166-2_2
https://doi.org/10.1007/978-3-319-47166-2_2

358 C. E. Budde et al.

46. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM (ITC-
13), pp. 71–76. Elsevier (1991)

47. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

48. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

49. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
http://creativecommons.org/licenses/by/4.0/

	A Statistical Model Checker for Nondeterminism and Rare Events
	1 Introduction
	2 Ingredients of a Statistical Model Checker
	3 Automated Rare Event Simulation
	4 Scheduler Sampling for Nondeterminism
	5 Architecture and Implementation
	6 Experiments
	7 Conclusion
	References

