
Is Your Software on Dope?
Formal Analysis of Surreptitiously “enhanced” Programs

Pedro R. D’Argenio1,2(B), Gilles Barthe3, Sebastian Biewer2,
Bernd Finkbeiner2, and Holger Hermanns2

1 FaMAF, Universidad Nacional de Córdoba – CONICET, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 Computer Science, Saarland Informatics Campus, Saarland University,
Saarbrücken, Germany

3 IMDEA Software, Madrid, Spain

Abstract. Usually, it is the software manufacturer who employs verifi-
cation or testing to ensure that the software embedded in a device meets
its main objectives. However, these days we are confronted with the sit-
uation that economical or technological reasons might make a manufac-
turer become interested in the software slightly deviating from its main
objective for dubious reasons. Examples include lock-in strategies and
the NOx emission scandals in automotive industry. This phenomenon is
what we call software doping. It is turning more widespread as software
is embedded in ever more devices of daily use.

The primary contribution of this article is to provide a hierarchy of
simple but solid formal definitions that enable to distinguish whether
a program is clean or doped. Moreover, we show that these characteri-
sations provide an immediate framework for analysis by using already
existing verification techniques. We exemplify this by applying self-
composition on sequential programs and model checking of HyperLTL
formulas on reactive models.

1 Introduction

The Volkswagen exhaust emissions scandal [43] has put software doping in the
spotlight: Proprietary embedded control software does not always exploit func-
tionality offered by a device in the best interest of the device owner. Instead the
software may be tweaked in various manners, driven by interests different from
those of the owner or of society. This is indeed a common characteristics for the
manner how different manufacturers circumvented [12,25] the diesel emission
regulations around the world. The exhaust software was manufactured in such
a way that it heavily polluted the environment, unless the software detected the

This work is partly supported by the ERC Grants 683300 (OSARES) and 695614
(POWVER), by the Saarbrücken Graduate School of Computer Science, by the
Sino-German CDZ project 1023 (CAP), by ANPCyT PICT-2012-1823, by SeCyT-
UNC 05/BP12 and 05/B497, and by the Madrid Region project S2013/ICE-2731
N-GREENS Software-CM.

c⃝ Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 83–110, 2017.
DOI: 10.1007/978-3-662-54434-1 4

84 P.R. D’Argenio et al.

car to be (likely) fixed on a particular test setup used to determine the NOx

footprint data officially published. Phenomena resembling the emission scandal
have also been reported in the context of smart phone designs [2], where software
was tailored to perform better when detecting it was running a certain bench-
mark, and otherwise running in lower clock speed. Another smart phone case,
disabling the phone [11] via a software update after “non-authorised” repair, has
later been undone [36].

Usually, it is the software manufacturer who employs verification or testing to
ensure that the software embedded in a device meets its main objectives. How-
ever, these days we are confronted with the situation that economical or tech-
nological reasons might make a manufacturer become interested in the software
slightly deviating from its main objective for dubious reasons. This phenomenon
is what we call software doping. It is turning more widespread as software is
embedded in ever more devices of daily use.

The simplest and likely most common example of software doping (effectu-
ating a customer lock-in strategy [3]) is that of ink printers [42] refusing to work
when supplied with a toner or ink cartridge of a third party manufacturer [41],
albeit being technically compatible. Similarly, cases are known where laptops
refuse to charge [40] the battery if connected to a third-party charger. More sub-
tle variations of this kind of doping just issue a warning message about the risk
of using a “foreign” cartridge [20]. In the same vein, it is known that printers
emit “low toner” warnings [33] earlier than needed, so as to drive or force the
customer into replacing cartridges prematurely. Moreover, there are allegations
that software doping has occurred in the context of electronic-voting so as to
manipulate the outcome [1]. Tampering with voting machines has been proved a
relatively easy task [21]. Common to all these examples is that the software user
has little or no control over its execution, and that the functionality in question
is against the interests of user or of society.

Despite the apparently pervasive presence of software doping, a systematic
investigation or formalisation from the software engineering perspective is not
existing. Fragmentary attention has been payed in the security domain with
respect to cryptographic protections being sabotaged by insiders [37]. Typical
examples are the many known backdoors, including the prominent dual EC
deterministic random bit generator standardised by NIST [14]. Software doping
however goes far beyond inclusion of backdoors.

Despite the many examples, it is not at all easy to provide a crisp character-
isation of what constitutes software doping. This paper explores this issue, and
proposes a hierarchy of formal characterisations of software doping. We aim at
formulating and enforcing rigid requirements on embedded software driven by
public interest, so as to effectively ban software doping. In order to sharpen our
intuition, we offer the following initial characterisation attempt [5].

A software system is doped if the manufacturer has included a
hidden functionality in such a way that the resulting behaviour
intentionally favors a designated party, against the interest of
society or of the software licensee.

(1)

Is Your Software on Dope? 85

So, a doped software induces behaviour that can not be justified by the
interest of the licensee or of society, but instead serves another usually hidden
interest. It thereby favors a certain brand, vendor, manufacturer, or other mar-
ket participant. This happens intentionally, and not by accident. However, the
question whether a certain behaviour is intentional or not is very difficult to
decide. To illustrate this, we recall that the above mentioned smart phone case,
to be specific the iPhone-6, where “non-authorised” repair rendered the phone
unusable [11] after an iOS update, seemed to be intentional when it surfaced,
but was actually tracked down to a software glitch of the update and fixed later.
Notably, if the iOS designers would have had the particular intention to mis-
treat licensees who went elsewhere for repair, the same behaviour could well
have qualified as software doping in the above sense (1). As a result, we will look
at software doping according to the above characterisation, keeping in mind the
possibility of intentionality but not aiming to capture it in a precise manner.

In our work, we use concise examples that are directly inspired by the real
cases reviewed above. They motivate our hierarchy of formal characterisations
of clean or doping-free software.

A core observation will be that software doping can be characterised by con-
sidering the program if started from two different but compatible initial states.
If the obtained outputs are not compatible, then this implies that the software
is doped. Thinking in terms of the printer, one would expect that printing with
different but compatible cartridges would yield the same printout without any
alteration in the observed alerts. As a consequence, the essence of the property
of being clean can be cast as a hyperproperty [16,17].

We first explore characterisations on sequential software (Sect. 2). We intro-
duce a characterisation that ensures the proper functioning of the system when-
ever it is confined to standard parameters and inputs. Afterwards, we give two
other characterisations that limit the behaviour of the system whenever it goes
beyond such standard framework. We then revise these characterisations so as
to apply to reactive non-deterministic systems (Sect. 3).

Traditionally hyperproperties require to be analysed in an ad-hoc manner
depending on the particular property. However, a general framework is provided
by techniques based on, e.g., self-composition techniques [6] or specific logic
such as HyperLTL [15]. Indeed, we show (Sect. 4) how these properties can be
analysed using self-composition on deterministic programs, particularly using
weakest precondition reasoning [18], and we do the same (Sect. 5) for reactive
systems using HyperLTL. In both settings we demonstrate principal feasibility
by presenting verification studies of simple but representative examples.

2 Software Doping on Sequential Programs

Think of a program as a function that accepts some initial parameters and, given
some inputs, produces some outputs, maybe in a non-deterministic manner.
Thus, a parameterised sequential non-deterministic program is a function S :
Param → In → 2Out, where Param is a set of parameters, each one of them fixing

86 P.R. D’Argenio et al.

a particular instance of the program S, and In and Out being respectively the
sets of inputs accepted by S and outputs produced by S. Notice that for a fixed
parameter p and input i ∈ In, the run of program S(p)(i) may give a set of
possible outputs.

procedure Printer(cartridge info)
if type(cartridge info) ∈ Compatible
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Fig. 2. A doped printer.

To understand a first possible definition, consider the program embedded
in a printer (a simple abstraction is given in Fig. 1). This program may check
compatibility of the ink or toner cartridge and print whenever the cartridge is
compatible. In this case, we can think of the program Printer as a function
parameterised with the information on the cartridge, that receives a document
as input and produces a sequence of pages as outputs whenever the cartridge is
compatible, otherwise it turns on an alert led. In this setting, we expect that the
printer shows the same input-output behaviour for any compatible cartridge.

A printer manufacturer may manipulate this program in order to favour its
own cartridge brand. An obvious way is displayed in Fig. 2. This is a sort of
discrimination based on parameter values. Therefore, a first approach to charac-
terising a program as clean (or doping-free) is that it should behave in a similar
way for all parameters of interest. By “similar behaviour” we mean that the
visible output should be the same for any given input in two different instances
of the same (parameterised) program. Also, by “all parameters of interest”, we
refer to all parameter values we are interested in. In the case of the printer,
we expect that it works with any compatible cartridge, but not with every car-
tridge. Such a compatibility domain defines a first scope within which a software
is evaluated to be clean or doped.

Formally, if PIntrs ⊆ Param, we could say that a parameterised program S is
clean (or doping-free) if for all pairs of parameters of interest p, p′ ∈ PIntrs
and input i ∈ In, S(p)(i) = S(p′)(i). Thus, the program of Fig. 1 satisfies
this constraint whenever Compatible is the set of parameters of interest (i.e.
Compatible = PIntrs). Instead, the program of Fig. 2 would be rejected as doped
by the previous definition.

We could imagine, nonetheless, that the printer manufacturer may like to
provide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more efficient or versatile

Is Your Software on Dope? 87

at the time of printing, but this requires some new technology on the cartridge
(we could compare this to the introduction of the postscript language when
standard printing was based on dots or ASCII code). The manufacturer still
wants to provide the usual functionality for standard file formats that work with
standard compatible cartridges and comes up with the program of Fig. 3. Notice
that this program does not conform to the specification of a clean program
as given above since it behaves differently when a document of the new (non-
standard) type is given. This is clearly not in the spirit of the program in Fig. 3
which is actually conforming to the expected requirements.

procedure Printer(cartridge info)
if type(cartridge info) ∈ Compatible then

read(document)
if (¬newType(document)

∨ supportsNewType(cartridge info))
then

print(stdout,document)
else

turnOn(alert led)
end if

else
turnOn(alert signal)

end if
end procedure

Fig. 3. A clean printer.

Thus, our first definition
states that a program is clean
if, for any possible instance from
the set of parameters of inter-
est, it exhibits the same visi-
ble outputs when supplied with
the same input, provided this
input complies with a given stan-
dard. Formally, we assume a set
PIntrs ⊆ Param of parameters of
interest and a set StdIn ⊆ In of
standard inputs and propose the
following definition.

Definition 1. A parameterised
program S is clean (or doping-free) if for all pairs of parameters of interest
p, p′ ∈ PIntrs and input i ∈ In, if i ∈ StdIn then S(p)(i) = S(p′)(i). If the program
is not clean we will say that it is doped.

The characterisation given above is based on a comparison of the behaviour
of two instances of a program, each of them responding to different parameter
values within PIntrs. A second, different characterisation may instead require
to compare a reference specification capturing the essence of clean behaviour
against any possible instance of the program. The first approach seems more
general than the second one in the sense that the specification could be consid-
ered as one of the possible instances of the (parameterised) program. However,
we can consider a distinguished parameter p̂ so that the instance S(p̂) is actually
the specification of the program, in which case, both definitions turn out to be
equivalent. In any case, it is important to observe that the specification may not
be available since it is also made by the software manufacturer, and only the
expected requirements may be known.

We remark that Definition 1 entails the existence of a contract which defines
the set of parameters of interest and the set of standard inputs. In fact, Defin-
ition 1 only asserts doping-freedom if the program is well-behaved within such
a contract, namely, as long as the parameters are within PIntrs and inputs are
within StdIn. A behaviour outside this realm is deemed immediately correct since
it is of no interest. This view results too mild in some cases where the change of

88 P.R. D’Argenio et al.

behaviour of a program between a standard input and a non-standard but yet
not-so-different input is extreme.

procedure EmissionControl()
read(throttle)
def dose := SCRModel(throttle)
NOx := throttle3 / (k · def dose)

end procedure

Fig. 4. A simple emission control.

Consider the electronic control unit
(ECU) of a diesel vehicle, in particular
its exhaust emission control module. For
diesel engines, the controller injects a cer-
tain amount of a specific fluid (an aqueous
urea solution) into the exhaust pipeline
in order to lower mono-nitrogen oxides
(NOx) emissions. We simplify this control problem to a minimal toy example.
In Fig. 4 we display a function that reads the throttle position and calculates
which is the dose of diesel exhaust fluid (DEF) (stored in def dose) that should
be injected to reduce the NOx emission. The last line of the program precisely
models the NOx emission by storing it in the output variable NOx after a (made
up) calculation directly depending on the throttle value and inversely depending
on the def dose.

procedure EmissionControl()
read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle)
else

def dose := altSCRModel(throttle)
end if
NOx := throttle3 / (k · def dose)

end procedure

Fig. 5. A doped emission control.

The Volkswagen emission scandal
arose precisely because their software was
instrumented so that it works as expected
only if operating in or very close to the
lab testing conditions [19]. For our simpli-
fied example, this behaviour is exempli-
fied by the algorithm of Fig. 5. Of course,
the real case was less simplistic. Precisely,
in this setting, the lab conditions define
the set of standard inputs, i.e., the set
StdIn is actually ThrottleTestValues and, as a consequence, a software like this
one trivially meets the characterisation of clean given in Definition 1. However,
this unit is intentionally programmed to defy the regulations when being unob-
served and hence it falls directly within our intuition of what a doped software
is (see (1)).

The spirit of the emission tests is to verify that the amount of NOx in the car
exhaust gas does not exceed a given threshold in general. Thus, one would expect
that if the input values of the EmissionControl function deviates within “rea-
sonable distance” from the standard input values provided during the lab emis-
sion test, the amount of NOx found in the exhaust gas is still within the regulated
threshold, or at least it does not exceed it more than a “reasonable amount”. A
similar rationale could be applied for regulation of other systems such as speed
limit controllers in scooters and electric bikes.

Therefore, we need to introduce two notions of distance dIn : (In× In) → R≥0

and dOut : (Out × Out) → R≥0 on inputs and outputs respectively. In principle,
we do not require them to be metrics, but they need to be commutative and
satisfy that dIn(i, i) = dOut(o, o) = 0 for all i ∈ In and o ∈ Out. Since programs
are non-deterministic, we need to lift the output distance to sets of outputs and
for that we will use the Hausdorff lifting which, as we will see, is exactly what
we need. Given a distance d, the Hausdorff lifting H(d) is defined by

Is Your Software on Dope? 89

H(d)(A,B) = max
{
supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)

}
(2)

Based on this, we provide a new definition that considers two parameters: para-
meter κi refers to the acceptable distance an input may deviate from the norm
to be still considered, and parameter κo that tells how far apart outputs are
allowed to be in case their respective inputs are within κi distance.

Definition 2. A parameterised program S is robustly clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In, if i ∈ StdIn is a standard
input and dIn(i, i′) ≤ κi then H(dOut)(S(p)(i), S(p′)(i′)) ≤ κo.

Requiring that H(dOut)(S(p)(i), S(p′)(i′)) ≤ κo is equivalent to demand that

1. for all o ∈ S(p)(i) there exists o′ ∈ S(p′)(i′) such that dOut(o, o′) ≤ κo, and
2. for all o′ ∈ S(p′)(i′) there exists o ∈ S(p)(i) such that dOut(o, o′) ≤ κo.

Notice that this is what we actually need for the non-deterministic case: each
output of one of the program instances should be matched within “reasonable
distance” by some output of the other program instance.

Notice that i′ does not need to satisfy StdIn, but it will be considered as long
as it is within κi distance of any input satisfying StdIn. In such a case, outputs
generated by S(p′)(i′) will be requested to be within κo distance of some output
generated by the respective execution induced by a standard input. In addition,
notice that if the program S is deterministic and terminating we could simply
write that dOut(S(p)(i), S(p′)(i′)) ≤ κo.

The concept of robustly clean programs generalises that of clean programs.
Indeed, by taking dIn(i, i) = 0 and dIn(i, i′) > κi for all i ̸= i′, and dOut(o, o) = 0
and dOut(o, o′) > κo for all o ̸= o′, we see that Definition 1 is subsumed by
Definition 2. Also, notice that the tolerance parameters κi and κo are values
that should be provided as well as the notions of distance dIn and dOut, and,
together with the set PIntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is robustly clean.
Moreover, the limitation to these tolerance values has to do with the fact that,
beyond it, particular requirements (e.g. safety) may arise. For instance, a smart
battery may stop accepting charge if the current emitted by a standardised
but foreign charger is higher than “reasonable” (i.e. than the tolerance values);
however, it may still proceed in case it is dealing with a charger of the same
brand for which it may know that it can resort to a customised protocol allowing
ultra-fast charging in a safe manner.

Example 3. We remark that Definition 2 will actually detect as doped the pro-
gram of Fig. 5 for appropriate distances dIn and dOut and tolerance parameters
κi and κo. Indeed, suppose that SCRModel(x) = x2, altSCRModel(x) = x,
and k = 2. To check if the programs are robustly clean, take In = (0, 2] (these
are the values that variable throttle takes), StdIn = (0, 1], let the distances dIn
and dOut be the absolute values of the differences of the values that take throttle
and NOx, respectively, and let κi = 2 and κo = 1. With this setting, the program
of Fig. 4 is robustly clean while the program of Fig. 5 is not.

90 P.R. D’Argenio et al.

Definition 2 can be further generalised by adjusting to a precise desired gran-
ularity given by a function f : R → R ∪ {∞} that relates the distances of the
input with the distances of the outputs as follows.

Definition 4. A parameterised program S is f -clean if for all pairs of parame-
ters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In, if i ∈ StdIn is a standard input
then H(dOut)(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).

Like for Definition 2, the definition of f -clean does not require i′ to satisfy
StdIn. Moreover, notice that it is important that f can map into ∞, in which
case it means that input i′ becomes irrelevant to the property. Also here the
Hausdorff distance is elegantly encoding the requirement that

1. for all o ∈ S(p)(i) there exists o′ ∈ S(p′)(i′) s.t. dOut(o, o′) ≤ f(dIn(i, i′)), and
2. for all o′ ∈ S(p′)(i′) there exists o ∈ S(p)(i) s.t. dOut(o, o′) ≤ f(dIn(i, i′)).

This definition is strictly more general than Definition 2, which can be seen
by taking f defined by f(x) = κo whenever x ≤ κi and f(x) = ∞ otherwise.
(Notice here the use of ∞.) Also, if the program S is deterministic, we could
simply require that dOut(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).

In this new definition, the bounding function f , together with the distances
dIn and dOut, the set PIntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is f -clean.

Example 5. For the example of the emission control take the setting as in Exam-
ple 3 and let f(x) = x/2. Then the program of Fig. 4 is f -clean while the program
of Fig. 5 is not.

We remark that the notion of f -clean strictly relates the distance of the input
values with the distance of the output values. Thus, e.g., the accepted distance
on the outputs may grow according the distance of the input grows. Compare
it to the notion of robustly clean in which the accepted distance on the outputs
is only bounded by a constant (κo), regardless of the proximity of the inputs
(which is only observed w.r.t. to constant κi).

3 Software Doping on Reactive Programs

Though we use the Volkswagen ECU case study as motivation for introducing
Definitions 2 and 4, this program is inherently reactive: the DEF dosage depends
not only of the current inputs but also on the current state (which in turn is set
according to previous inputs). Therefore, in this section, we revise the definitions
given in the previous section within the framework of reactive programs.

We consider a parameterised reactive program as a function S : Param →
Inω → 2(Outω) so that any instance of the program reacts to the k-th input
in the input sequence producing the k-th output in each respective output
sequence. Thus each instance of the program can be seen, for instance, as a
(non-deterministic) Mealy or Moore machine. In this setting, we require that
StdIn ⊆ Inω. Thus, the definition of a clean reactive program strongly resembles
Definition 1.

Is Your Software on Dope? 91

Definition 6. A parameterised reactive program S is clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and input i ∈ Inω, if i ∈ StdIn then S(p)(i) =
S(p′)(i).

Naively, we may think that the definition of robustly clean may be also reused
as given in Definition 2 by considering metrics on ω-traces. Unfortunately this
definition does not work as expected: suppose two input sequences in Inω that
only differ by a single input in some late k-th position but originates a distance
larger than κi. Now the program under study may become clean even if the
respective outputs differ enormously at an early k′-th position (k′ < k). Notice
that there is no justification for such early difference on the output, since the
input sequences are the same up to position k′.

In fact, we notice that the property of being clean is of a safety nature: if
there is a point in a pair of executions in which the program is detected to be
doped, there is no extension of such executions that can correct it and make the
program clean. In the observation above, the k′-th prefix of the trace should be
considered the bad prefix and the program deemed as doped.

Therefore, we consider distances on finite traces: dIn : (In∗ × In∗) → R≥0 and
dOut : (Out∗ × Out∗) → R≥0. Now, we provide a definition of robustly clean
on reactive programs that ensures that, as long as all j-th prefix of a given
input sequence, with j ≤ k, are within κi distance, the k-th prefix of the output
sequence are within κo distance, for any k ≥ 0. In the following definition, we
denote with i[..k] the k-th prefix of the input sequence i (and similarly for output
sequences).

Definition 7. A parameterised reactive program S is robustly clean if for all
pairs of parameters of interest p, p′ ∈ PIntrs and input sequences i, i′ ∈ Inω, if
i ∈ StdIn then, for all k ≥ 0 the following must hold

(∀j ≤ k : dIn(i[..j], i′[..j]) ≤ κi) → H(dOut)(S(p)(i)[..k], S(p′)(i′)[..k]) ≤ κo,

where S(p)(i)[..k] = {o[..k] | o ∈ S(p)(i)} and similarly for S(p′)(i′)[..k].

By having as precondition that dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, this def-
inition considers the fact that once one instance of the program deviates too
much from the normal behaviour (i.e. beyond κi distance at the input), this
instance is not obliged any longer to meet (within κo distance) the output, even
if later inputs get closer again. This enables robustly clean programs to stop if
an input outside the standard domain may result harmful for the system. Also,
notice that, by considering the conditions through all k-th prefixes the definition
encompasses the safety nature of the robustly cleanness property.

Example 8. A slightly more realistic version of the emission control system on
the ECU is given in Fig. 6. It is a closed loop where the calculation of the DEF
dosage also depends on the previous reading of NOx. Moreover, the DEF dosage
does not affect deterministically in the NOx emission. Instead, there is a margin
of error on the NOx emission which is represented by the factor λ and the
non-deterministic assignment of variable NOx in the penultimate line within the
loop.

92 P.R. D’Argenio et al.

procedure EmissionControl()
NOx := 0
loop

read(throttle)
def dose := SCRModel(throttle,NOx)

NOx :∈
[
(1 − λ) throttle3

k·def dose , (1 + λ) throttle3

k·def dose

]

output(NOx)
end loop

end procedure

Fig. 6. An emission control (reactive).

This non-deterministic assign-
ment is an (admittedly unrealis-
tic) abstraction of the chemical
reaction between the exhaust gases
and the DEF dosage. Figure 7
gives the version of the emis-
sion control system instrument-
ing the cheating hack. We define
the selective catalytic reduction
(SCR) models as follows:

SCRModel(x, n) =

{
x2 if k · n ≤ x

(1 + λ) · x2 otherwise

where λ = 0.1 and k = 2, and altSCRModel(x, n) = x (i.e., it ignores the feed-
back of the NOx emission resulting in the same altSCRModel as in Exam-
ple 3). We also take In = (0, 2] (recall that these are the values that variable
throttle takes). The idea of the feedback in SCRModel is that if the previous
emission was higher than expected with the planned current dosage, then the
actual current dosage is an extra λ portion above the planned dosage.

procedure EmissionControl()
NOx := 0
loop

read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle,NOx)
else

def dose := altSCRModel(throttle,NOx)
end if
NOx :∈

[
(1 − λ) throttle3

k·def dose , (1 + λ) throttle3

k·def dose

]

output(NOx)
end loop

end procedure

Fig. 7. A doped emission control (reactive).

For the contract required by
robustly cleanness, we let StdIn =
(0, 1]ω and define dIn(i, i′) =
|last(i) − last(i′)| and similarly
dOut(o, o′) = |last(o) − last(o′)|,
where last(t) is the last element
of the finite trace t. We take κi =
2 and κo = 1.1. (κo needs to
be a little larger than in Exam-
ple 3 due to the non-deterministic
assignment to NOx.)

In Sect. 6 we will use a model
checking tool to prove that the
algorithm in Fig. 6 is robustly
clean, while the algorithm of Fig. 7 is not.

As before, Definition 7 can be further generalised by adjusting to a precise
desired granularity given by a function f : R → R∪{∞} that relates the distances
of the input with the distances of the outputs as follows.

Definition 9. A parameterised reactive program S is f -clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and input sequences i, i′ ∈ Inω, if i ∈ StdIn
then for all k ≥ 0, H(dOut)(S(p)(i)[..k], S(p′)(i′)[..k]) ≤ f(dIn(i[..k], i′[..k])).

Like for Definition 7, the definition of f -cleanness also considers distance
on prefixes to ensure that major differences in late inputs do not impact on
differences of early outputs, capturing also the safety nature of the property.

Is Your Software on Dope? 93

We observe that Definition 9 is more general than Definition 7. As before,
define f by f(x) = κo whenever x ≤ 1 and f(x) = ∞ otherwise, but also
redefine the metric on the input domain as follows:

dnewIn (i[..k], i′[..k]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i[..k] = i′[..k]
1 if either i ∈ StdIn or i′ ∈ StdIn, i[..k] ̸= i′[..k]

and dIn(i[..j], i′[..j]) ≤ κi for all 0 ≤ j ≤ k

2 otherwise

for all i, i′ ∈ In and k ≥ 0.

Example 10. For the example of the emission control take the setting as in Exam-
ple 8 and let f(x) = x/2 + 0.3. The variation of f w.r.t. Example 5 is necessary
to cope with the non-determinism introduced in these models. With this setting,
in Sect. 6 we will check that the program of Fig. 6 is f -clean while the program
of Fig. 7 is not.

4 Analysis Through Self-composition

In this section we will focus on sequential deterministic programs and we will
see them in the usual way: as state transformers. Thus, if µ, µ′ : Var → Val are
states mapping the variables of a program into values within their domain, we
denote with (S, µ) ⇓ µ′ that a program S, initially taking values according to
µ, executes and terminates in state µ′. We indicate with (S, µ) ⇓ ⊥ that the
program S starting at state µ does not terminate. As usual, we denote by µ |= φ
that a predicate φ holds on a state µ.

In this new setting, and restricting to deterministic programs, Definition 1
could be alternatively formulated as in Proposition 11. For this, we will assume
that S contains sets of variables x⃗p, x⃗i, and x⃗o which are respectively parameter
variables, input variables and output variables. Moreover, let PIntrs and StdIn be
predicates on states containing only program variables in x⃗p and x⃗i, respectively.
They characterise the set of parameters of interest and the set of standard inputs.
Now, we can state,

Proposition 11. A sequential and deterministic program S is clean if and only
if for all states µ1, µ2 and µ′

1 such that µ1 |= PIntrs∧StdIn, µ2 |= PIntrs∧StdIn,
µ1(x⃗i) = µ2(x⃗i) and (S, µ1) ⇓ µ′

1, it holds that (S, µ2) ⇓ µ′
2 and µ′

1(x⃗o) = µ′
2(x⃗o)

for some µ′
2.

The proof of the proposition is straightforward since it is basically a notation
change, hence we omit it. Also, notice that we omit any explicit reference to
non-terminating programs. This is not necessary due to the symmetric nature
of the predicates.

94 P.R. D’Argenio et al.

In the nomenclature of [7] relations

I = {(µ1, µ2) | µ1 |= PIntrs ∧ StdIn,

µ2 |= PIntrs ∧ StdIn, andµ1(x⃗i) = µ2(x⃗i)}
I ′ = {(µ1, µ2) | µ1(x⃗o) = µ2(x⃗o)}

are called indistinguishable criteria1, and if (µ1, µ2) ∈ I then we say that µ1

and µ2 are I-indistinguishable2. Similarly, for I ′. Thus, Proposition 11 char-
acterises what in [7] is called termination-sensitive (I, I ′)-security and, by [7,
Proposition 3], the property of cleanness can be analysed using the weakest (con-
servative) precondition (wp) [18] through self-composition.

Proposition 12. Let [x⃗/x⃗′] indicate the substitution of each variable x by vari-
able x′. Then a deterministic program S is clean if and only if

(
(PIntrs ∧ StdIn) ∧ (PIntrs ∧ StdIn)[x⃗/x⃗′]
∧ x⃗i = x⃗′

i ∧ wp(S, true)

)
⇒ wp(S;S[x⃗/x⃗′], x⃗o = x⃗′

o).

The term wp(S, true) in the antecedent of the implication is the weakest
precondition that ensures that program S terminates. It is necessary in the
predicate, otherwise it could become false only because program S does not
terminate.

With the same setting as before, and taking dIn, dOut, κi and κo as for Defini-
tion 2, we obtain an alternative definition of robustly cleanness for deterministic
programs.

Proposition 13. A sequential and deterministic program S is robustly clean if
and only if for all states µ1, µ2, and µ′ such that µ1 |= PIntrs∧StdIn, µ2 |= PIntrs,
and dIn(µ1(x⃗i), µ2(x⃗i)) ≤ κi, the following two conditions hold:

1. if (S, µ1) ⇓ µ′, then (S, µ2) ⇓ µ′
2 and dOut(µ′(x⃗o), µ′

2(x⃗o)) ≤ κo for some µ′
2;

and
2. if (S, µ2) ⇓ µ′, then (S, µ1) ⇓ µ′

1 and dOut(µ′
1(x⃗o), µ′(x⃗o)) ≤ κo for some µ′

1.

In this case, the indistinguishability criteria are

I = {(µ1, µ2) | µ1 |= PIntrs ∧ StdIn, µ2 |= PIntrs, and dIn(µ1(x⃗i), µ2(x⃗i)) ≤ κi}
I ′ = {(µ1, µ2) | dOut(µ1(x⃗o), µ2(x⃗o)) ≤ κo}

Notice that I is not symmetric. Then the first item of Proposition 13 charac-
terises termination-sensitive (I, I ′)-security while the second item characterises
termination-sensitive (I−1, I ′)-security. Using again [7, Proposition 3], the prop-
erty of robustly cleanness can be analysed using wp through self-composition.
1 In this definition, states should actually be considered as tuples of values rather than
state mappings in order to exactly match the definitions of [7, Sect. 3].

2 Also, to strictly follow notation in [7, Sect. 3] we should have written µ1 ∼I
id µ2

instead of (µ1, µ2) ∈ I.

Is Your Software on Dope? 95

Proposition 14. A deterministic program S is robustly clean if and only if

PIntrs ∧ StdIn ∧ PIntrs[x⃗/x⃗′] ∧ dIn(x⃗i, x⃗
′
i) ≤ κi

⇒
(

wp(S, true) ⇒ wp(S;S[x⃗/x⃗′], dOut(x⃗o, x⃗′
o) ≤ κo)

∧ wp(S[x⃗/x⃗′], true) ⇒ wp(S[x⃗/x⃗′];S, dOut(x⃗o, x⃗′
o) ≤ κo)

)

Proceeding in a similar manner, we can also obtain an alternative definition
of f -cleanness for deterministic programs.

Proposition 15. A sequential and deterministic program S is f-clean if and
only if for all states µ1, µ2, and µ′ such that µ1 |= PIntrs∧StdIn, and µ2 |= PIntrs,
the following two conditions hold:

1. if (S, µ1)⇓µ′, then (S, µ2)⇓µ′
2 and dOut(µ′(x⃗o), µ′

2(x⃗o)) ≤ f(dIn(µ1(x⃗i), µ2(x⃗i))
for some µ′

2; and
2. if (S, µ2)⇓µ′, then (S, µ1)⇓µ′

1 and dOut(µ′
1(x⃗o), µ′(x⃗o)) ≤ f(dIn(µ1(x⃗i), µ2(x⃗i))

for some µ′
1.

Notice that the term f(dIn(µ1(x⃗i), µ2(x⃗i)) appears in the conclusion of the
implications of both items. This may look unexpected since it seems to be related
to the input requirements rather than the output requirements, in particular
because it refers to the input states. This makes this case a little less obvious
than the previous one. To overcome this situation, we introduce a constant Y ∈
R≥0 which we assume universally quantified. Using this, we define the following
indistinguishability criteria

IY = {(µ1, µ2) | µ1 |= PIntrs ∧ StdIn,

µ2 |= PIntrs, and f(dIn(µ1(x⃗i), µ2(x⃗i))) = Y }
I ′
Y = {(µ1, µ2) | dOut(µ1(x⃗o), µ2(x⃗o)) ≤ Y }

By using this, by Proposition 15, we have that S is f -clean if and only if for
every Y ∈ R≥0, and for all states µ1, µ2, and µ′ such that (µ1, µ2) ∈ IY

1. if (S, µ1) ⇓ µ′, then (S, µ2) ⇓ µ′
2 and (µ′, µ′

2) ∈ I ′
Y for some µ′

2; and
2. if (S, µ2) ⇓ µ′, then (S, µ1) ⇓ µ′

1 and (µ′
1, µ

′) ∈ I ′
Y for some µ′

1.

With this new definition, and taking into account again the asymmetry of
IY , the first item characterises termination-sensitive (IY , I ′

Y)-security while the
second one characterises termination-sensitive (I−1

Y , I ′
Y)-security. From this and

[7, Prop. 3], the property of f -cleanness can be analysed using wp and self-
composition.

Proposition 16. A deterministic program S is f-clean if and only if for all
Y ∈ R≥0

PIntrs ∧ StdIn ∧ PIntrs[x⃗/x⃗′] ∧ f(di(x⃗i, x⃗
′
i)) = Y

⇒
(

wp(S, true) ⇒ wp(S;S[x⃗/x⃗′], dOut(x⃗o, x⃗′
o) ≤ Y

∧ wp(S[x⃗/x⃗′], true) ⇒ wp(S[x⃗/x⃗′];S, dOut(x⃗o, x⃗′
o) ≤ Y

)

96 P.R. D’Argenio et al.

wp(x := e,Q) = Q[e/x]

wp(if b then S1 else S2 end if, Q) = b ⇒ wp(S1, Q) ∧ ¬b ⇒ wp(S2, Q)

wp(S1;S2, Q) = wp(S1,wp(S2, Q))

wp(while b do S end do, Q) = ∃k : k ≥ 0 : Hk(Q)

where H0(Q) = ¬b ∧ Q and Hk+1(Q) = (b ∧ wp(S,Hk(Q))) ∨ H0(Q)

Fig. 8. Equations for the wp calculus

Example 17. In this example, we use Proposition 16 to prove correct our state-
ments in Example 3. First, we recall the definition of wp in Fig. 8, and rewrite
the programs in Figs. 4 and 5 with all functions and values properly instantiated
in the way we need it here (see Figs. 9 and 10).

def dose := thrtl2
NOx := thrtl3 / (2 · def dose)

Fig. 9. Program EC.

if thrtl ∈ ThrottleTestValues
then

def dose := thrtl 2
else

def dose := thrtl
end if
NOx := thrtl3 / (2 · def dose)

Fig. 10. Program AEC.

On the one hand, none of the programs
have parameters, then PIntrs = true. On the
other hand, StdIn = (thrtl ∈ (0, 1]). Since
wp(ec, true) = true we have to prove that

thrtl ∈ (0, 1] ∧
(

|thrtl−thrtl ′|
2 = Y

)

⇒
(

wp(ec;ec′, |NOx − NOx ′| ≤ Y)
∧ wp(ec′;ec, |NOx − NOx ′| ≤ Y)

)

(3)

where ec′ is another instance of ec with
every program variable x renamed by x′. More-
over, function f and distances dIn and dOut

are already instantiated. It is not difficult to
verify that wp(ec;ec′, |NOx−NOx ′| ≤ Y) ≡(

|thrtl−thrtl ′|
2 ≤ Y

)
and wp(ec′;ec, |NOx−NOx ′| ≤ Y) ≡

(
|thrtl ′−thrtl|

2 ≤ Y
)

from which the implication follows and hence ec is f -clean.
For aec we also have that wp(aec, true) = true and hence we have to prove

a formula similar to 3. In this case, wp(aec;aec′, |NOx − NOx ′| ≤ Y) is

(thrtl ∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl−thrtl ′|
2 ≤ Y

∧ (thrtl ∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl−thrtl ′2|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl2−thrtl ′|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl2−thrtl ′2|
2 ≤ Y

The predicate is the same for wp(aec′;aec, |NOx − NOx ′| ≤ Y), since |a − b| =
|b − a|. Then, the predicate
(
thrtl ∈ (0, 1] ∧ |thrtl−thrtl ′|

2 = Y
)

⇒
(

wp(aec;aec′, |NOx − NOx ′| ≤ Y)
∧ wp(aec′;aec, |NOx − NOx ′| ≤ Y)

)

Is Your Software on Dope? 97

is equivalent to

(
thrtl ∈ (0, 1] ∧ |thrtl−thrtl ′|

2 = Y
)

⇒
(

thrtl ′ ∈ (0, 1] ⇒ |thrtl−thrtl ′|
2 ≤ Y

∧ thrtl ′ /∈ (0, 1] ⇒ |thrtl−thrtl ′2|
2 ≤ Y

)

which can be proved false if, e.g., thrtl = 1 and thrtl ′ = 1.5.
Notwithstanding the simplicity of the previous example, the technique can

be applied to complex programs including loops. We decided to keep it simple
as it is not our intention to show the power of wp, but the applicability of our
definition.

We could profit from [7] for the use of other verification techniques, including
separation logic and model checking where the properties can be expressed in
terms of LTL and CTL. Particularly, CTL permits the encoding of the full non-
deterministic properties given in Sect. 2. We will not dwell on this since in the
next section we explore the encoding of the reactive properties through a more
general setting.

5 Analysis of Reactive Programs with HyperLTL

HyperLTL [15] is a temporal logic for the specification of hyperproperties of
reactive systems. HyperLTL extends linear-time temporal logic (LTL) with trace
quantifiers and trace variables, which allow the logic to refer to multiple traces
at the same time. The problem of model checking a HyperLTL formula over a
finite-state model is decidable [24]. In this section, we focus on reactive non-
deterministic programs and use HyperLTL to encode the different definitions of
clean reactive programs given in Sect. 3. In the following, we interpret a program
as a set S ⊆ (2AP)ω of infinite traces over a set AP of atomic propositions.

Let π be a trace variable from a set V of trace variables. A HyperLTL formula
is defined by the following grammar:

ψ ::= ∃π.ψ | ∀π.ψ | φ
φ ::= aπ | ¬φ | φ ∨ φ | Xφ | φ U φ

(4)

The quantifiers ∃ and ∀ quantify existentially and universally, respectively, over
the set of traces. For example, the formula ∀π.∃π′.φ means that for every trace
π there exists another trace π′ such that φ holds over the pair of traces. If
no universal quantifier occurs in the scope of an existential quantifier, and no
existential quantifiers occurs in the scope of a universal quantifier, we call the
formula alternation-free. In order to refer to the values of the atomic propositions
in the different traces, the atomic propositions are indexed with trace variables:
for some atomic proposition a ∈ AP and some trace variable π ∈ V, aπ states that
a holds in the initial position of trace π. The temporal operators and Boolean
connectives are interpreted as usual. In particular, Xφ means that φ holds in
the next state of every trace under consideration. Likewise, φ U φ′ means that
φ′ eventually holds in every trace under consideration at the same point in
time, provided φ holds in every previous instant in all such traces. We also use

98 P.R. D’Argenio et al.

the standard derived operators: Fφ ≡ true U φ, Gφ ≡ ¬F¬φ, and φ W φ′ ≡
¬(¬φ′ U (¬φ ∧ ¬φ′)).

A trace assignment is a partial function Π : V → (2AP)ω that assigns traces
to variables. Let Π[π 3→ t] denote the same function as Π except that π is
mapped to the trace t. For k ∈ N, let t[k], t[k..], and t[..k] denote respectively
the k-th element of t, the k-th suffix of t, and the k-th prefix of t. The trace
assignment suffix Π[k..] is defined by Π[k..](π) = Π(π)[k..]. By Π |=S ψ we
mean that formula φ is satisfied by the program S under the trace assignment
Π. Satisfaction is recursively defined as follows.

Π |=S ∃π.ψ iff Π[π (→ t] |=S ψ for some t ∈ S
Π |=S ∀π.ψ iff Π[π (→ t] |=S ψ for every t ∈ S
Π |=S aπ iff a ∈ Π(π)[0]
Π |=S ¬φ iff Π ̸|=S φ
Π |=S φ1 ∨ φ2 iff Π |=S φ1 or Π |=S φ2

Π |=S Xφ iff Π[1..] |=S φ
Π |=S φ1 U φ2 iff there exists k ≥ 0 s.t. Π[k..] |=S φ2 and

for all 0 ≤ j<k,Π[j..] |=S φ1

We say that a program S satisfies a HyperLTL formula ψ if it is satisfied
under the empty trace assignment, that is, if ∅ |=S ψ.

In the following, we give the different characterisations of cleanness for reac-
tive programs in terms of HyperLTL. For this, let AP = APp ∪ APi ∪ APo where
APp, APi, and APo are the atomic propositions that define the parameter values,
the input values, and the output values respectively. Thus, we take Param = 2APp ,
In = 2APi and Out = 2APo . Therefore, a program S ⊆ (2AP)ω can be seen as a
function Ŝ : Param → Inω → 2(Outω) where

t ∈ S if and only if (t ↓ APo) ∈ Ŝ(t[0] ∩ APp)(t ↓ APi), (5)

with t ↓ A defined by (t ↓ A)[k] = t[k] ∩ A for all k ∈ N.
For the propositions appearing in the rest of this sections, we will assume that

distances between traces are defined only according to its last element. That is,
for the distance dIn : (In∗×In∗) → R≥0 there exists a distance d̂In : (In×In) → R≥0

such that dIn(i, i′) = d̂In(last(i), last(i′)) for every i, i′ ∈ In∗, and similarly for
dOut : (Out∗ × Out∗) → R≥0. Let us call these type of distances past-forgetful.
Moreover, we will need the abbreviations given in Table 1 for a clear presentation
of the formulas.

The set of parameters of interest PIntrs ⊆ Param defines a Boolean formula
which we ambiguously call PIntrs. Also, we let StdIn be an LTL formula with
atomic propositions in APi, that is, a formula obtained with the grammar in the
second line of (4) where atomic propositions have the form a ∈ APi (instead
of aπ). Thus StdIn characterises the set of all input sequences through an LTL
formula. With StdInπ we represent the HyperLTL formula that is exactly like
StdIn but where each occurrence of a ∈ APi has been replaced by aπ. Likewise,
we let PIntrsπ represent the Boolean formula that is exactly like PIntrs with each
occurrence of a ∈ APp replaced by aπ. We are now in conditions to state the
characterisation of a clean program in terms of HyperLTL.

Is Your Software on Dope? 99

Table 1. Syntactic sugar for comparisons between traces

pπ = pπ′ iff
∧

a∈APp

aπ ↔ aπ′

iπ = iπ′ iff
∧

a∈APi

aπ ↔ aπ′

oπ = oπ′ iff
∧

a∈APo

aπ ↔ aπ′

d̂In(iπ, iπ′) ≤ κi iff
∨

i,i′∈In
d̂(i,i′)≤κi

∧

a∈i

aπ ∧
∧

a∈i′

aπ′

d̂Out(oπ, oπ′) ≤ κo iff
∨

o,o′∈Out
d̂(o,o′)≤κo

∧

a∈o

aπ ∧
∧

a∈o′

aπ′

d̂Out(oπ, oπ′) ≤ f(d̂In(iπ, iπ′)) iff
∨

o,o′∈Out,i,i′∈In
d̂(o,o′)≤f(d̂(i,i′))

∧

a∈i

aπ ∧
∧

a∈i′

aπ′ ∧
∧

a∈o

aπ ∧
∧

a∈o′

aπ′

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

∀π1.∀π2.∃π′
2.(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ G(iπ1 = iπ′

2
∧ oπ1 = oπ′

2
)
)

(6)

As it is given, the formula actually states that

∀p1 : ∀p2 : ∀i : p1, p2 ∈ PIntrs ∧ i ∈ StdIn : Ŝ(p1)(i) ⊆ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2), this
is indeed equivalent to Definition 6. Notice that in (6), π2 quantifies universally
the parameter of the second instance, while π′

2 represents the existence of the
output sequence in such instance. The proofs of Propositions 18 to 20 follow the
same structures. So we only provide the proof of Proposition 19 which is the
most involved.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

∀π1.∀π2.∃π′
2.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ G(iπ2 = iπ′

2
) ∧

(
(d̂Out(oπ1 , oπ′

2
) ≤ κo)W (d̂In(iπ1 , iπ′

2
) > κi)

))

∀π1.∀π2.∃π′
1.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ G(iπ1 = iπ′

1
) ∧

(
(d̂Out(oπ′

1
, oπ2) ≤ κo)W (d̂In(iπ′

1
, iπ2) > κi)

))

(7)

100 P.R. D’Argenio et al.

The difference between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on
the program that may deviate, the second one works in the other way around.
Thus each of the formulas capture each of the sup-inf terms in the definition of
Hausdorff distance (see (2)). To notice this, follow the existentially quantified
variable (π′

2 for the first formula, and π′
1 for the second one). Also, the weak until

operator W has exactly the behaviour that we need to represent the interaction
between the distances of inputs and the distances of outputs. The semantics of
φ W ψ is defined by

t |= φ W ψ iff ∀k ≥ 0 : (∀j ≤ k : t[j..] |= ¬ψ) → t[k..] |= φ (8)

Next, we prove Proposition 19.

Proof. We only prove that the first formula captures the bound on the left sup-
inf term of the definition of Hausdorff distance (see eq. (2)) in Definition 7. The
other condition is proved in the same way and corresponds to the other sup-inf
term of the Hausdorff distance. Taking into account the semantics of the weak
until operator given in Eq. 8, the semantics of HyperLTL in general and using
abbreviations in Table 1, formula 7 is equivalent to the following statement

∀t1 ∈ S : ∀t2 ∈ S : ∃t′2 ∈ S :
(t1 |= PIntrs ∧ t2 |= PIntrs ∧ t1 |= StdIn)

→
(
(t2[0] ∩ APp) = (t′2[0] ∩ APp) ∧ (∀j ≥ 0 : t2[j] ∩ APi = t′2[j] ∩ APi)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(t1[j] ∩ APi, t
′
2[j] ∩ APi) ≤ κi)

→ d̂Out(t1[k] ∩ APo, t
′
2[k] ∩ APo) ≤ κo

)

By applying some definitions and notation changes, this is equivalent to

∀t1 ∈ S : ∀t2 ∈ S : ∃t′2 ∈ S :
((t1[0] ∩ APp) ∈ PIntrs ∧ (t2[0] ∩ APp) ∈ PIntrs ∧ (t1 ↓ APi) ∈ StdIn)

→
(
(t2[0] ∩ APp) = (t′2[0] ∩ APp) ∧ (t2 ↓ APi) = (t′2 ↓ APi)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(t1[j] ∩ APi, t
′
2[j] ∩ APi) ≤ κi)

→ d̂Out(t1[k] ∩ APo, t
′
2[k] ∩ APo) ≤ κo

)

which, by logic manipulation, is equivalent to

∀p1 : ∀p2 : ∀i1 : ∀i2 : ∀o1 :
(
∃t1 ∈ S : ∃t2 ∈ S :

(p1 = (t1[0] ∩ APp) ∈ PIntrs) ∧ (p2 = (t2[0] ∩ APp) ∈ PIntrs)

∧ i1 = (t1 ↓ APi) ∧ i2 = (t2 ↓ APi) ∧ o1 = (t1 ↓ APo) ∧ i1 ∈ StdIn
)

Is Your Software on Dope? 101

→ ∃o2 : ∃t′2 ∈ S :
(
p2 = (t′2[0] ∩ APp) ∧ i2 = (t′2 ↓ APi) ∧ o2 = (t′2 ↓ APo)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(i1[j], i2[j]) ≤ κi) → d̂Out(o1[k], o2[k]) ≤ κo

)

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

∀p1 : ∀p2 : ∀i1 : ∀i2 : ∀o1 :
(
p1, p2 ∈ PIntrs ∧ i1 ∈ StdIn ∧ ∀k ≥ 0 : (∀j ≤ k : dIn(i1[..j], i2[..j]) ≤ κi)

∧ o1 ∈ Ŝ(p1)(i1)
)

→
(
∃o2 ∈ Ŝ(p2)(i2) : dOut(o1[..k], o2[..k]) ≤ κo

)

which in turn corresponds to bounding the left sup-inf term of the Hausdorff
distance (see (2)) in Definition 7,

∀p1 : ∀p2 : ∀i1 : ∀i2 :
(
p1, p2 ∈ PIntrs ∧ i1 ∈ StdIn ∧ ∀k ≥ 0 : (∀j ≤ k : dIn(i1[..j], i2[..j]) ≤ κi)

)

→
(
supo1∈Ŝ(p1)(i1)

info2∈Ŝ(p2)(i2)
dOut(o1[..k], o2[..k])

)
≤ κo

thus proving this part of the proposition. ⊓7

Finally, we also give the characterisation of an f -clean program in terms of
HyperLTL.

Proposition 20. A reactive program S is f-clean under past-forgetful distances
dIn and dOut if and only if S satisfies the following two HyperLTL formulas

∀π1.∀π2.∃π′
2.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ G(iπ2 = iπ′

2
) ∧ G

(
d̂Out(oπ1 , oπ′

2
) ≤ f(d̂In(iπ1 , iπ′

2
))

))

∀π1.∀π2.∃π′
1.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ G(iπ1 = iπ′

1
) ∧ G

(
d̂Out(oπ′

1
, oπ2) ≤ f(d̂In(iπ′

1
, iπ2))

))
(9)

As before, the difference between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t, t′) = d(t[k..], t′[k..]) for every finite traces t and t′ and a fixed
bound k ∈ N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).

102 P.R. D’Argenio et al.

Example 21. In our running example of the emission control system (see Exam-
ples 8 and 10), the property of robustly cleanness reduces to checking formula

∀π1.∀π2.∃π′
2.

StdInπ1 →
(
G(tπ2 = tπ′

2
) ∧

(
(d̂Out(nπ1 ,nπ′

2
) ≤ κo)W (d̂In(tπ1 , tπ′

2
) > κi)

))

(10)

and the obvious symmetric formula. For readability reasons, we shorthandedly
write t for thrtl and n for NOx. Notice that any reference to parameters disap-
pears since the emission control system does not have parameters, and the set
of standard inputs is characterised by the LTL formula StdIn ≡ G(t ∈ (0, 1]).
Likewise, we can verify that the model of the emission control system is f -clean
through the formula

∀π1.∀π2.∃π′
2.

StdInπ1 →
(
G(tπ2 = tπ′

2
) ∧ G

(
d̂Out(nπ1 ,nπ′

2
) ≤ f(d̂In(tπ1 , tπ′

2
))

))
(11)

and the symmetric formula.

6 Experimental Results

We verified the cleanness of the emission control system using the HyperLTL
model checker MCHyper [24]. The input to the model checker is a description of
the system as an Aiger circuit and a hyperproperty specified as an alternation-
free HyperLTL formula. Since the HyperLTL formulas from the previous section
are of the form ∀π1∀π2∃π′

2 . . ., and are, hence, not alternation-free, MCHyper
cannot check these formulas directly. However, it is possible to prove or disprove
such formulas by strengthening the formulas and their negations manually into
alternation-free formulas that are accepted by MCHyper.

In order to prove that program ec in Fig. 9 is robustly clean, we strengthen
formula (10) by substituting π2 for the existentially quantified variable π′

2. The
resulting formula is alternation-free:

∀π1.∀π2. StdInπ1 →
(
(d̂Out(nπ1 ,nπ2) ≤ κo)W (d̂In(tπ1 , tπ2) > κi)

)
(12)

MCHyper confirms that program ec satisfies (12). The program thus also satis-
fies (10). Notice that we had obtained the same formula if we would have started
from the formula symmetric to (10).

To prove that program aec in Fig. 10 is doped with respect to (10), we
negate (10) and obtain

∃π1.∃π2.∀π′
2.

¬
(
StdInπ1 →

(
G(tπ2 = tπ′

2
) ∧

(
(d̂Out(nπ1 ,nπ′

2
) ≤ κo)W (d̂In(tπ1 , tπ′

2
) > κi)

)))

Is Your Software on Dope? 103

This formula is of the form ∃π1.∃π2.∀π′
2. . . . and, hence, again not alternation-

free. We replace the two existential quantifiers with universal quantifiers and
restrict the quantification to two specific throttle values, a for π1 and b for π2:

∀π1.∀π2.∀π′
2.

G(tπ1 = a ∧ tπ2 = b) →

¬
(
StdInπ1 →

(
G(tπ2 = tπ′

2
) ∧

(
(d̂Out(nπ1 ,nπ′

2
) ≤ κo)W (d̂In(tπ1 , tπ′

2
) > κi)

)))

(13a)

This transformation is sound as long as there actually exist traces with throttle
values a and b. We establish this by checking, separately, that the following
existential formula is satisfied:

∃π1.∃π2.G(tπ1 = a ∧ tπ2 = b) (14)

MCHyper confirms the satisfaction of both formulas, which proves that (10) is
violated by program aec. Precisely, the counterexample that shows the violation
of (10) is any pair of traces π1 and π2 that makes G(tπ1 = a∧tπ2 = b) true in (14).
We proceed similarly for the formula symmetric to (10) obtaining two formulas
just as before which are also satisfied by aec and hence the original formula is
not. Also, we follow a similar process to prove that ec is f -clean but aec is not.

Table 2. Experimental results from the verification of robust cleanness of ec and aec

Program NOx Model size Circuit size Property Time

Step #transitions #latches #gates (sec.)

ec 0.05 1436 17 9749 (12) 0.92

0.00625 60648 23 505123 (12) 22.19

aec 0.05 3756 19 27574 (13a) a = 0.1 1.62

(13b) a = 0.1 1.6

(13a) a = 1 1.68

(13b) a = 1 1.56

0.00625 175944 25 1623679 (13a) a = 0.1 102.07

(13b) a = 0.1 96.3

(13a) a = 1 97.67

(13b) a = 1 92.8

Table 2 shows experimental results obtained with MCHyper3 version 0.91 for
the verification of robustly cleanness. The Aiger models were constructed by
discretizing the values of the throttle and the NOx. We show results from two
different models, where the values of the throttle was discretised in steps of 0.1
3 https://www.react.uni-saarland.de/tools/mchyper/.

104 P.R. D’Argenio et al.

units in both models and the values of the NOx in steps of 0.05 and 0.00625.
All experiments were run under OS X “El Capitan” (10.11.6) on a MacBook
Air with a 1.7GHz Intel Core i5 and 4GB 1333MHz DDR3. In Table 2, the
model size is given in terms of the number of transitions, while the size of the
Aiger circuit encoding the model prepared for the property is given in terms
of the number of latches and gates. The specification checked by MCHyper is
the formula indicated in the property column. Formula (13b) is the formula
symmetric to (13a). For the throttle values a and b in formulas (13a) and (13b),
we chose b = 2 and let a vary as specified in the property column. Table 3
shows similar experimental results for the verification of f -cleanness. With (12′),
(13a′), and (13b′) we indicate the similar variations to (12), (13a), and (13b)
required to verify (11). Model checking takes less than two seconds for the coarse
discretisation and about two minutes for the fine discretisation.

Table 3. Experimental results from the verification of f -cleanness of ec and aec

Program NOx Model size Circuit size Property Time

step #transitions #latches #gates (sec.)

ec 0.05 1436 5 9869 (12′) 1.08

0.00625 60648 8 505285 (12′) 21.74

aec 0.05 3756 6 27708 (13a′) a = 0.1 1.71

(13b′) a = 0.1 1.72

(13a′) a = 1 1.72

(13b′) a = 1 1.77

0.00625 175944 9 1623855 (13a′) a = 0.1 95.29

(13b′) a = 0.1 97.48

(13a′) a = 1 95.57

(13b′) a = 1 95.5

7 A Comprehensive Characterisation

If we concretely focus on the contract between the society or the licensee, and
the software manufacturer, we can think in a more general but precise definition.
It emerges by noticing that there is a partition on the set of inputs in three sets,
each one of them fulfilling a different role within the contract:

1. The set StdIn of standard inputs. For these inputs, the program is expected
to work exactly as regulated. It is the case, e.g., of the inputs defining the
tests for the NOx emission. Thus, it is expected that the program complies
to Definition 1 when provided only with inputs in StdIn.

Is Your Software on Dope? 105

2. The set Comm of committed inputs such that Comm∩StdIn = ∅. These inputs
are expected to be close according to a distance to StdIn and are not strictly
regulated. However, it is expected that the manufacturer commits to respect
certain bounds on the outputs. This would correspond to the inputs that do
not behave exactly like the tests for the NOx emission, but yet define “reason-
able behaviour” of the car on the road. The behaviour of the program under
this set of inputs can be characterised either by Definition 2 or Definition 4.

3. All other inputs are supposed to be anomalous and expected to be signif-
icantly distant from the standard inputs. In our emission control example,
this can occur, e.g., if the car is climbing a steep mountain or speeding up
in a highway. In this realm the only expectation is that the behaviour of the
output is continuous with respect to the input.

Bearing this partition in mind, we propose the following general definition.

Definition 22. A parameterised program S is clean (or doping-free) if for all
pairs of parameters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In,

1. if i ∈ StdIn then S(p)(i) = S(p′)(i);
2. if i ∈ StdIn and i′ ∈ Comm then H(dOut)(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).
3. for every ϵ > 0 there exists δ > 0 such that for all i′ /∈ StdIn ∪ Comm and

i ∈ In, dIn(i, i′) < δ implies H(dOut)(S(p)(i), S(p′)(i′)) < ϵ.

Notice that, while PIntrs, StdIn, Comm, dIn, dOut, and f are part of the
contract entailed by the definition, ϵ and δ in item 3 are not since they are
quantified (universally and existentially, resp.) in the definition. In this case,
we choose for item 3 to require that the program S is uniformly continuous in
In \ (StdIn ∪ Comm). However, we could have opted for stronger requirements
such as Lipschitz continuity. The chosen type of continuity would also be part
of the contract. Notice that this is the only case in which we require continuity.
Instead, discontinuities are allowed in cases 1 and 2 as long as the conditions
are respected since they may be part of the specification. In particular, notice
that f could be any function. Obviously, a similar definition can be obtained for
reactive systems.

We remark that cases 1 and 2 can be verified, as we showed in the paper. We
have not yet explored the verification of case 3.

8 Related Work

The term “software doping” has being coined by the press about a year ago
and, after the Volkswagen exhaust emissions scandal, the elephant in the room
became unavoidable: software developers introduce code intended to deceive [28].
Recently, a special session at ISOLA 2016 was devoted to this topic [34]. In [9],
Baum attacks the problem from a philosophical point of view and elaborates on
the ethics of it. In [5], we provided a first discussion of the problem and some
informal characterisations hinting at the formal proposal of this paper. Though

106 P.R. D’Argenio et al.

all these works point out the need for a technical attack on the problem, none
of them provide a formal proposal.

Similar to software doping, backdoored software is a class of software that
does not act in the best interest of users; see for instance the recent analysis
in [37]. The primary emphasis of backdoored software is on leaking confidential
information while guaranteeing functionality.

Dope-freedom in sequential programs is strongly related to abstract non-
intereference [6,26] as already disussed in Sect. 4. More generally, our notions of
dope-freedom are hyperproperties [16], a general class that encompasses notions
across different domains, in particular non-interference in security [39], robust-
ness (a.k.a. stability) in cyber-physical systems [13], and truthfulness in algorith-
mic game theory [8]. There exist several methods for verifying hyperproperties,
including relational and Cartesian Hoare logics [10,38,44], self-composition and
product programs constructions [4,7], temporal logics [15,23,24], or games [35].
These techniques greatly vary in their completeness, efficiency, and scalability.

Another worthwhile direction to study is the use of program equivalence
analysis [22,27] for the analysis of cleanness.

9 Concluding Remarks

This article has focused on a serious and yet long overlooked problem, arising if
software developers intentionally and silently deviate from the intended objective
of the developed software. A notorious reason behind such deviations are simple
and blunt lock-in strategies, so as to bind the software licensee to a certain
product or product family. However, the motivations can be more diverse and
obscure. As the software manufacturer has full control over the development
process, the deviation can be subtle and surreptitiously introduced in a way that
the fact that the program does not quite conform to the expected requirements
may go well unnoticed.

We have pioneered the formalisation of this problem domain by offering sev-
eral formal characterisations of software doping. These can serve as a framework
for establishing a contract between the interested parties, namely the society or
the licensee, and the software manufacturer, so as to avoid and eventually ban
the development of doped programs.

We have also reported on the use of existing theories and tools at hand to
demonstrate that the formal characterisation can indeed be analysed in various
ways. In particular, the application of the self-composition technique opens many
research directions for further analysis of software doping as it has been widely
studied in the area of security [29,31], semantical differences [32] and cross or
relative verification [30].

As we have demonstrated, the use of HyperLTL enables the automatic analy-
sis of reactive models with respect to software doping. However, the complexity
of this technique imposes some serious limits on its applicability. Thus, further
studies in this direction are needed in order to enable analysis of reactive models
of relatively large size, or alternatively to analyse the program code directly.

Is Your Software on Dope? 107

We believe our characterisations provide a first solid step to understand soft-
ware doping and that our result opens a large umbrella of new possibilities, both
in the direction of more dedicated characterisations as well as specifically tailored
analysis techniques. For instance, the idea of dealing with distances and thresh-
olds already rises the question of whether such distances could be quantified by
probabilities. Also, the NOx emission example would immediately suggest that
the technique should also be addressed with testing. Moreover, the fact that
the characterisations are hyperproperties also invites us to investigate for static
analysis of source code based on type systems, abstraction techniques, etc.

Acknowledgement. We would like to thank the Dependable Systems and Software
Group (Saarland University) for a fruitful discussion during an early presentation of
this work, and Nicolás Wolovick for drawing our attention to electronic voting.

References

1. Agorist, M.: WATCH: computer programmer testifies he helped rig voting
machines. MintPress News (2016) http://www.mintpressnews.com/214505-2/
214505/. Accessed 13 Jan 2017

2. AppleInsider: Galaxy S4 on steroids: Samsung caught doping in benchmarks
(2013). http://forums.appleinsider.com/discussion/158782/galaxy-s-4-on-steroids-
samsung-caught-doping-in-benchmarks. Accessed 13 Jan 2017

3. Arthur, W.B.: Competing technologies, increasing returns, and lock-in by historical
events. Econ. J. 99(394), 116–131 (1989). http://www.jstor.org/stable/2234208

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 17

5. Barthe, G., D’Argenio, P.R., Finkbeiner, B., Hermanns, H.: Facets of software
doping. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 601–
608. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47169-3 46

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-
composition. In: CSFW-17, pp. 100–114. IEEE Computer Society (2004). http://
doi.ieeecomputersociety.org/10.1109/CSFW.2004.17

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by
self-composition. Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011).
http://dx.doi.org/10.1017/S0960129511000193

8. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.: Higher-order
approximate relational refinement types for mechanism design and differential pri-
vacy. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 55–68. ACM (2015).
http://doi.acm.org/10.1145/2676726.2677000

9. Baum, K.: What the hack is wrong with software doping? In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 633–647. Springer, Heidel-
berg (2016). doi:10.1007/978-3-319-47169-3 49

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 14–25. ACM
Press (2004). http://doi.acm.org/10.1145/964001.964003

108 P.R. D’Argenio et al.

11. Brignall, M.: ‘Error 53’ fury mounts as Apple software update threatens to kill your
iPhone 6. The Guardian (2010). https://www.theguardian.com/money/2016/feb/
05/error-53-apple-iphone-software-update-handset-worthless-third-party-repair.
Accessed 13 Jan 2017

12. Carrel, P., Bryan, V., Croft, A.: Germany asks Opel for more informa-
tion in Zafira emissions probe. Reuters (2016). http://www.reuters.com/article/
us-volkswagen-emissions-germany-opel-idUSKCN0Y92GI. Accessed 13 Jan 2017

13. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Hermenegildo, M.V., Palsberg, J. (eds.) POPL 2010, pp. 57–70 (2010). http://doi.
acm.org/10.1145/1706299.1706308

14. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T.,
Ristenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.:
On the practical exploitability of dual EC in TLS implementations. In: Fu, K.,
Jung, J. (eds.) 23rd USENIX Security Symposium. pp. 319–335. USENIX Asso-
ciation (2014). https://www.usenix.org/conference/usenixsecurity14/technical-ses
sions/presentation/checkoway

15. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

16. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF 2008, pp. 51–65 (2008).
http://dx.doi.org/10.1109/CSF.2008.7

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). http://dx.doi.org/10.3233/JCS-2009-0393

18. Dijkstra, E.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle River
(1997)

19. Domke, F., Lange, D.: The exhaust emissions scandal (“Dieselgate”). In: 30th
Chaos Communication Congress (2015). https://events.ccc.de/congress/2015/
Fahrplan/events/7331.html. Accessed 13 Jan 2017

20. Dvorak, J.C.: The secret printer companies are keeping from you. PC Mag UK
(2012). http://uk.pcmag.com/printers/60628/opinion/the-secret-printer-compani
es-are-keeping-from-you. Accessed 13 Jan 2017

21. Feldman, A.J., Halderman, J.A., Felten, E.W.: Security analysis of the
Diebold AccuVote-ts voting machine. In: Martinez, R., Wagner, D. (eds.)
2007 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT
2007. USENIX Association (2007). https://www.usenix.org/conference/evt-07/
security-analysis-diebold-accuvote-ts-voting-machine

22. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Crnkovic, I., Chechik, M., Grünbacher, P. (eds.) ASE
2014, pp. 349–360. ACM (2014). http://doi.acm.org/10.1145/2642937.2642987

23. Finkbeiner, B., Hahn, C.: Deciding Hyperproperties. In: Desharnais, J.,
Jagadeesan, R. (eds.) CONCUR 2016. LIPIcs, vol. 59, pp. 13:1–13:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016). http://drops.dagstuhl.de/opus/
volltexte/2016/6170

24. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 30–48. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 3

25. Flak, A., Taylor, E., Wacket, M., Eckert, V., Stonestreet, J.: Test of fiat diesel
model shows irregular emissions: Bild am Sonntag. Reuters (2016). http://www.
reuters.com/article/us-fiat-emissions-germany-idUSKCN0XL0MT. Accessed 13
Jan 2017

Is Your Software on Dope? 109

26. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Jones, N.D., Leroy, X. (eds.) POPL
2004, pp. 186–197. ACM (2004). http://doi.acm.org/10.1145/964001.964017

27. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

28. Hatton, L., van Genuchten, M.: When software crosses a line. IEEE Softw. 33(1),
29–31 (2016). http://dx.doi.org/10.1109/MS.2016.6

29. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct. In:
Miller, E.L., Hand, S. (eds.) SOSP 2015, pp. 1–17. ACM (2015). http://doi.acm.
org/10.1145/2815400.2815428

30. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,
Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? Static cross-
version compiler validation. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE
2013, pp. 191–201 (2013). http://doi.acm.org/10.1145/2491411.2491442

31. Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) CCS 2013, pp. 211–222. ACM (2013). http://doi.acm.org/10.1145/2508859.
2516721

32. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

33. Manjoo, F.: Take that, stupid printer! Slate (2008). http://www.slate.com/
articles/technology/technology/2008/08/take that stupid printer.html. Accessed
13 Jan 2017

34. Margaria, T., Steffen, B. (eds.): ISoLA 2016. LNCS, vol. 9953. Springer, Heidelberg
(2016)

35. Milushev, D., Clarke, D.: Incremental hyperproperty model checking via games. In:
Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 247–262.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41488-6 17

36. Panzarino, M.: Apple apologizes and updates iOS to restore iPhones dis-
abled by error 53. TechCrunch (2016). https://techcrunch.com/2016/02/18/apple-
apologizes-and-updates-ios-to-restore-iphones-disabled-by-error-53/. Accessed 13
Jan 2017

37. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weakening
cryptographic systems. IACR Cryptology ePrint Archive 2015, 97 (2015). http://
eprint.iacr.org/2015/097

38. Sousa, M., Dillig, I.: Cartesian Hoare logic for verifying k-safety properties. In:
Krintz, C., Berger, E. (eds.) PLDI 2016, pp. 57–69. ACM (2016). http://doi.acm.
org/10.1145/2908080.2908092

39. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

40. Tritech Computer Solutions: Dell laptops reject third-party bat-
teries and AC adapters/chargers. Hardware vendor lock-in?
https://nctritech.wordpress.com/2010/01/26/dell-laptops-reject-third-party-batt
eries-and-ac-adapterschargers-hardware-vendor-lock-in/ (2010). Accessed 13 Jan
2017

110 P.R. D’Argenio et al.

41. Waller, K.: Has a printer update rendered your cartridges redundant? Which?
(2016). https://conversation.which.co.uk/technology/printer-software-update-thi
rd-party-printer-ink/. Accessed 13 Jan 2017

42. Waste Ink: Epson firmware update = no to compatibles. http://www.wasteink.co.
uk/epson-firmware-update-compatible-problem/ (2012). Accessed 13 Jan 2017

43. Wikipedia: Volkswagen emissions scandal. Wikipedia, The Free Encyclopedia
(2016). https://en.wikipedia.org/wiki/Volkswagen emissions scandal. Accessed 13
Jan 2017

44. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1–3), 308–334
(2007). http://dx.doi.org/10.1016/j.tcs.2006.12.036

