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Abstract

When a process is capable of executing an unbounded number of non-observable actions it is said to
be divergent. Different capabilities of an observer to identify this phenomena along the execution leads to
different divergent sensitive semantics. This paper develops sound and complete axiomatisations for the
divergence sensitive spectrum of weak bisimulation equivalence. The axiomatisations separates the axioms
concerning recursion and those that capture the essence of diverging behaviour.
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1. Motivation

The study of comparative concurrency semantics is concerned with a uniform classification of
process behaviour, and has cumulated in Rob van Glabbeek’s seminal papers on the linear time-
branching time spectrum [6,7]. The main (‘vertical’) dimension of the spectrum with silent moves [7]
spans between trace equivalence (TE) andbranching bisimulation (BB), and identifies differentways
to discriminate processes according to their branching structure, where BB induces the finest, and
TE the coarsest reasonable semantics. Due to the presence of silent moves, this spectrum is spread
in another (‘horizontal’) dimension, determined by the semantics of divergence. In the fragment
spanning from weak bisimulation (WB) to BB, seven different criteria to distinguish divergence
induce a ‘horizontal’ lattice, and this lattice appears for all the bisimulation relations. Five of the
induced relations are equivalences, the other two are preorders. The weak bisimulation equivalence
spectrum fragment is depicted in Fig. 1.

To illustrate the spectrum, van Glabbeek lists a number of examples and counterexamples show-
ing the differences among the various semantics [7].Process algebra provides a different—and to our
opinionmoreelegant—waytocomparesemantic issues,byprovidingdistinguishingaxiomsthatcap-
ture the essence of an equivalence (or preorder). For the ‘vertical’ dimension of the spectrum, these
distinguishing axioms are well known (see e.g., [6,9,2]). Typical axioms of this kind areMilner’s three
law forWB [14], van Glabbeek andWeijland axiom for BB [9], and the axioms for failure semantics
[5,4]. In comparison, little effort has been made on finding axioms that capture the essence of diver-
gence, that is, that characterise the ‘horizontal’ dimension. We believe that this is mainly due to the
fact that divergence onlymakes sense in the presence of recursion, and that recursion is hard to tackle
axiomatically. Isolated points in the ‘horizontal’ dimension have however been axiomatised, most
notablyMilner’s weak bisimulation (WB) congruence [13], and also convergentWBpreorder [15], as
well as divergence insensitive BB congruence [8] and stable WB congruence [10]. It is worth to men-
tion the works of [4] and [1], which axiomatised divergence sensitiveWB congruence and convergent
WB preorder, respectively, but without showing completeness in the presence of recursion.

This paper develops complete axiomatisations for the ‘horizontal’ dimension of weak bisimula-
tion equivalence. A lattice of distinguishing axioms is shown to characterise the distinct semantics
of divergence, and to precisely reflect the ‘horizontal’ lattice structure of the spectrum. This lattice
forms the basis of a complete axiomatisation for the bisimulation spectrum spanning from WB to
BB.

Fig. 1. A zoom into the van Glabbeek spectrum with silent moves.
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The paper is organised as follows. Section 2 introduces the necessary notation and definitions,
while Section 3 recalls the weak bisimulation equivalences and Section 4 introduces the axiom
systems. Section 5 is devoted to soundness of the axioms and sets the ground for the completeness
proof. Section 6 presents the main step of the proof, only focusing on closed expressions, while
Section 7 covers open expressions. Section 8 concludes the paper.

A short version of this paper has appeared in [11].

2. Preliminaries

We assume a set of variables � and a set of actions � , containing the silent action �. We consider
the set of open finite state agents with silent moves and explicit divergence, given as the set � of
expressions generated by the grammar

E ::= 0 | a.E | E + E | recX.E | X | 	(E),

where X ∈ � and a ∈ � . The expression	(E) has the same behaviour as E, except that divergence
is explicitly added to the root of E.

A variable X is said to occur free in E if it occurs in E outside the scope of any binding recX -
operator. �(E) denote the set of all free variables in E. We define � = {E ∈ � | �(E) = ∅}. We use
E, F ,G,H , . . . (resp. P ,Q,R, . . .) to range over expressions from � (resp.� ). The syntactic equality on
� up to renaming of bound variables is denoted by≡. If �F = (F1, . . . , Fn) is a sequence of expressions,�X = (X1, . . . ,Xn) is a sequence of variables, and E ∈ � , then E{�F / �X } denotes the expression that
results from E by simultaneously replacing all free occurrences of Xi in E by Fi (1 � i � n). 5 The
variable X is guarded (resp. weakly guarded) in E, if every free occurrence of X in E lies within a
subexpression of the form a.F with a ∈ � \{�} (resp. a ∈ � ), otherwise X is called unguarded (resp.
totally unguarded) in E. Thus, for instance X is unguarded but weakly guarded in �.X . Furthermore,
X is totally unguarded in 	(X). The expression E is guarded if for every subexpression recY.F of E
the variable Y is guarded in F .

The semantics of � is given as the least transition relations on � satisfying the following rules,
where a ∈ � :

a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

E
a−→ E′

F + E
a−→ E′

E{recX.E/X } a−→ E′

recX.E
a−→ E′

E
a−→ E′

	(E)
a−→ E′ 	(E)

�−→ 	(E)
.

The rules are standard, except that, as noted before, 	(E) can diverge, in addition to exhibiting
all the behaviour of E. It should be noted that	(E) and recX.(�.X + E) generate the same transition
system when X �∈ �(E), indicating that the 	-operator is not essential. We however prefer to keep
the	-operator explicitly, since it will simplify notations considerably. Operators similar to	 have

5 If necessary we have to rename bound variables in E in order to avoid that free variables of the Fi get bound.
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already appeared in the literature (see e.g., [4,15,10]), all of them as constants (instead of unary
operations) and usually bearing also the meaning of “undefinedness,” not present in our work.
From all of them, the semantics of 	 is closest to that of [4].

A useful observation is that E
a−→ F and Y ∈ �(F) implies Y ∈ �(E). This can be shown by

induction on the height of the derivation tree for the transition E
a−→ F .

Since we are working in the context of silent steps, we define a few standard abbreviations.
The relation �⇒ denotes the transitive reflexive closure of the relation

�−→. We write E a�⇒ F if
E �⇒ E′ a−→ F ′ �⇒ F for some E′, F ′ ∈ � . We write E â�⇒ F if (a /= � and E a�⇒ F ) or (a = � and
E �⇒ F ). We write E

�−→ if E
�−→ F for some F ∈ � . Finally, we write E −→ if E

a−→ F for some
a ∈ � and F ∈ � .

Next we define a few properties that an expression may or may not have. We will use a suffix
notation for these properties, i.e., if E ∈ � and � is a property of expressions, then we write E�

instead of �(E). We define the properties �, ⊥, ⇑, and ⇑, respectively, as follows:

• E � (E is stable) if and only if E
�−→ does not hold.

• E⊥ if and only if E −→ does not hold.
• E ⇑ (E is divergent) if there are expressions Ei for i ∈ � such that E = E0

�−→ E1
�−→ E2 · · ·.

• E⇑ if (E ⇑ or there exists F with E �⇒ F⊥).

Note also that for � ∈ {⇑,⇑}, E �⇒ F� implies already E�.
In the remainder of this section, we state a few useful properties of the above notions. We will

use these properties quite extensively (later sometimes also without explicit reference) in the further
discussion. In all lemmas let E, F ,G,H ∈ � and a ∈ � .

The following two statements can be also found in [8, Lemma 4] (without the	-operator, which
does not complicate the situation). Lemma 1 can be shown by induction on the height of the
derivation tree for G

a−→ H , whereas Lemma 2 can be proved by induction on the structure of the
expression G.

Lemma 1. If G
a−→ H , then G{E/X } a−→ H {E/X }.

Lemma 2. If E
a−→ F and the variable X is totally unguarded in G then G{E/X } a−→ F.

Lemma 3. Let G{E/X } a−→ F be derivable by a derivation tree of height n. Then one of the following
two cases holds:

(1) X is totally unguarded in G and E
a−→ F , which can be derived by a derivation tree of height at

most n.
(2) G

a−→ H and F ≡ H {E/X }. Furthermore, if X is guarded inG and a = � then X is also guarded
in H.

Proof. Induction on n: The case that G has the form Y ∈ � , a.G′, or G1 + G2 is clear. If G ≡ 	(G′)
and 	(G′{E/X }) a−→ F then either F ≡ 	(G′{E/X }) and a = �, and we obtain the second case, or
G′{E/X } a−→ F , which can be derived by a derivation tree of height at most n− 1. By induction,
either



M. Lohrey et al. / Information and Computation 203 (2005) 115–144 119

• X is totally unguarded in G′, i.e., totally unguarded in G, and E
a−→ F by a derivation tree of

height at most n− 1 or
• G′ a−→ H (and thus G

a−→ H ), F ≡ H {E/X }, and if X is guarded in G′, i.e., guarded in G, and
a = � then X is also guarded in H .

Finally, assume that G ≡ recY.G′. The case X ≡ Y is clear. Thus, assume that X �≡ Y . By renaming
the bound variable Y if necessary, we can assume that Y �∈ �(E). Thus, recY.G′{E/X } a−→ F implies

(G′{recY.G′/Y }){E/X } ≡ (G′{E/X }){recY.G′{E/X }/Y } a−→ F

by a derivation tree of height at most n− 1. The induction hypothesis implies that either

(1) X is totally unguarded in G′{recY.G′/Y } (i.e., totally unguarded in G) and E
a−→ F , which can

be derived by a derivation tree of height at most n− 1, or
(2) G′{recY.G′/Y } a−→ H (i.e., G

a−→ H ) and F ≡ H {E/X }. Furthermore, if X is guarded in
G′{recY.G′/Y } (i.e., guarded in G) and a = � then X is also guarded in H . �

The preceding three lemmas easily imply the next two lemmas:

Lemma 4. Let � ∈ {�,⊥}. Then G{E/X }� if and only if G� and (X is weakly guarded in G or E�).

Lemma 5. G{E/X } ⇑ if and only if G ⇑ or (G �⇒ H , X is totally unguarded in H , and E ⇑).
For � = ⊥, the statement of Lemma 4 can be easily sharpened to: G{E/X }⊥ if and only if G⊥

and (X �∈ �(G) or E⊥).
Lemma 6. recX.G

a−→ E if and only if there exists H ∈ � with G
a−→ H and E ≡ H {recX.G/X }.

Proof.First assume thatG
a−→ H and E ≡ H {recX.G/X }. Then Lemma 1 impliesG{recX.G/X } a−→

E, i.e, recX.G
a−→ E. For theotherdirectionassume that recX.G

a−→ E canbederivedbyaderivation
tree of height n but there does not exist a derivation tree for this transition of height < n. Then
G{recX.G/X } a−→ E can be derived by a derivation tree of height n− 1. By Lemma 3 eitherG

a−→ H

and E ≡ H {recX.G/X } for someH , or X is totally unguarded inG and recX.G
a−→ E can be derived

by a derivation tree of height � n− 1. But the second alternative contradicts the choice of n. �

Lemma 7. recX.G ⇑ if and only if G ⇑ or (G
��⇒ H and X is totally unguarded in H).

Proof. IfG ⇑ then, by Lemma 5, alsoG{recX.G/X } ⇑, i.e., recX.G ⇑. IfG ��⇒ H and X is totally un-
guarded in H then G{recX.G/X } ��⇒ H {recX.G/X }, i.e, recX.G �−→ E �⇒ H {recX.G/X } for some
E. Since X is totally unguarded in H , Lemma 2 implies

recX.G
�−→ E �⇒ H {recX.G/X } �−→ E,

i.e., recX.G ⇑. Finally assume that recX.G ⇑. Then recX.G
�−→ E and E ⇑. By Lemma 6 we have

G
�−→ G′ and E ≡ G′{recX.G/X } ⇑ for someG′. By Lemma 5 eitherG′ ⇑ (and thusG ⇑), orG′ �⇒

H (and thus G ��⇒ H ) for some H such that X is totally unguarded in H . �
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3. The bisimulations

A symmetric relation R ⊆ � × � is a weak bisimulation (WB) if for all P ,Q, P ′ ∈ � and a ∈ �

the following holds:

if (P ,Q) ∈ R and P
a−→ P ′, then ∃Q′ : Q â�⇒ Q′ and (P ′,Q′) ∈ R

Since we restrict to symmetric relations, we do not have to mention the symmetric simulation
condition. We say that a symmetric relation R preserves a property � if for all P ,Q, P ′ ∈ � the
following holds:

if (P ,Q) ∈ R, P �⇒ P ′, and P ′�, then ∃Q′ ∈ � : Q �⇒ Q′ and Q′�.

It follows immediately that a WB R preserves a property �, if and only if the following holds:

if (P ,Q) ∈ R and P�, then ∃Q′ ∈ � : Q �⇒ Q′ and Q′�.

We will always make use of this simple observation. Finally, a WB R is a WB� if it preserves �.
A WB� (resp. WB⊥, WB⇑, WB⇑) is also called a stable (resp. completed, divergent, divergent stable)
WB. To simplify notations, we will use WBε as a synonym for WB in the following. In the sequel,
� will range over {�,⊥,⇑,⇑, ε}, unless stated otherwise. The relation ≈�⊆ � × � is defined as the
union of all WB�; it is easily seen to be itself a WB� as well as an equivalence relation.

Theorem 1 ([7]). The equivalences ≈� are ordered by inclusion according to the lattice in Fig. 2. The
lower relation contains the upper if and only if both are connected by a line.

The relation ≈� is not a congruence with respect to the +-operator (which is a well-known
deficiency), and for � ∈ {⇑,⇑, �,⊥} also not a congruence with respect to the 	-operator. For
instance �.0 ≈⇑ 0, but	(�.0) �≈⇑ 	(0). To obtain the coarsest congruence on � that is contained in
≈�, we define each�� to be the relation that contains exactly the pairs (P ,Q) ∈ � × � that satisfy
the following root conditions:

• if P a−→ P ′, then Q
a�⇒ Q′ and P ′ ≈� Q′ for some Q′

• if Q a−→ Q′, then P
a�⇒ P ′ and P ′ ≈� Q′ for some P ′

So far we defined the relations ≈� and �� only on � . We lift these relations from � to � as
usual: Let R ⊆ � × � and E, F ∈ � . Let �X = (X1, . . . ,Xn) be a sequence of variables that contains

Fig. 2. Inclusions between the relations ≈� .
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all variables from �(E) ∪ �(F). Then (E, F) ∈ R if for all �P = (P1, . . . , Pn) with Pi ∈ � we have
(E{�P/ �X }, F {�P/ �X }) ∈ R.

Theorem 2. The relation �� is the coarsest congruence contained in ≈� with respect to the operators
of � . Furthermore, the inclusions listed in Theorem 1 carry over from ≈� to �� .

For the proof of this theorem we need the following lemma:

Lemma 8. Let P ,Q ∈ � . If P + R ≈� Q + R for all R ∈ � , then P �� Q.

Proof. Assume that P + R ≈� Q + R for all R ∈ � and P ��� Q. By the definition of ��, there is
somea ∈ � such thatw.l.o.g.P

a−→ P ′ butwheneverQ a�⇒ Q′, thenP ′ �≈� Q′. ChooseR ≡ b.0where
b ∈ � does not occur in P nor inQ. 6 Clearly, P + R

a−→ P ′, and since P + R ≈� Q + R there is some
Q′ such thatQ + R

â�⇒ Q′ and P ′ ≈� Q′. However, if a = � andQ′ ≡ Q + R, then P ′ �≈� Q′ sinceQ′
may do a b-transition whereas P ′ does not have this possibility. OtherwiseQ a�⇒ Q′ (since R a�⇒ Q′
is impossible because b /= a), so again P ′ �≈� Q′ and we conclude in either case by contradiction.
�
Proof of Theorem 2. Due to the way we have lifted relations from � to � , it suffices to prove the
theorem for expressions from� . That the inclusions fromFig. 2 also hold for the relations�� is easy
to check. The inclusion �� ⊆ ≈� can be verified by proving that the relation �� ∪ ≈� is a WB�,
which is easy to see by inspecting the root conditions. Also preservation of the property � is straight-
forward, let us only consider the case � = ⇑. Thus, assume that P⇑ and P �� Q (the case P ≈� Q is
clear). Then either P⊥ or P

�−→ P ′⇑ for some P ′. In the first case, P �⇑ Q impliesQ⊥. In the second
case, P �⇑ Q implies Q ��⇒ Q′ and P ′ ≈⇑ Q′ for some Q′. Since P ′⇑ we obtain Q′⇑ and thus Q⇑.

It remains to show that �� is the coarsest congruence with respect to the operators of � . Con-
gruence with respect to ‘+’ and action prefix is clear (for the congruence with respect to action
prefix we have to use the inclusion�� ⊆ ≈�). Congruence with respect to	 can be seen as follows.
Assume that P �� Q. First note that {(	(P),	(Q)), (	(Q),	(P))} ∪ ≈� is a WB�. Thus, we have
	(P) ≈� 	(Q). From this we deduce easily that the pair (	(P),	(Q)) satisfies also the root con-
ditions, i.e., 	(P) �� 	(Q). The congruence proof with respect to the recursion operator (the only
hard part) is shifted to Appendix 9.

It remains to argue that �� is in fact the coarsest congruence contained in ≈�. Assume that
R ⊆≈� is a congruence with respect to the operators of � . Let (P ,Q) ∈ R. Thus, for all R ∈ � we
have (P + R,Q + R) ∈ R, i.e., P + R ≈� Q + R. By Lemma 8 we have P �� Q. Thus, R ⊆ ��. �

4. Axioms

This section introduces a lattice of axioms characterising the congruences from the previous
section. For � ∈ {�,⊥,⇑, ε}, the axioms for �� are those in Table 1 plus axiom (�) from Table 2.
The axioms for�⇑ are those in Table 1 plus the axioms (⇑) and (⇑) from Table 2. We write E =� F

if E = F can be derived by application of the axioms for ��.

6 For simplicity we assume that � is infinite and make use of the fresh atom principle when choosing a fresh b ∈ � . We
will do so in several other occasions throughout the paper. This is nevertheless not necessary. See, e.g. [8].
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Table 1
Core axioms

(S1) E + F = F + E (�1) a.�.E = a.E

(S2) E + (F + G) = (E + F)+ G (�2) �.E + E = �.E

(S3) E + E = E (�3) a.(E + �.F) = a.(E + �.F)+ a.F

(S4) E + 0 = E

(rec1) if Y is not free in recX.E then recX.E = recY.(E{Y/X })
(rec2) recX.E = E{recX.E/X }
(rec3) if X is guarded in E and F = E{F/X } then F = recX.E

(rec4) recX.(X + E) = recX.E

(rec5) recX.(�.(X + E)+ F) = recX.	(E + F)

(rec6) recX.(	(X + E)+ F) = recX.	(E + F)

Table 2
Distinguishing axioms

(⇑) 	(	(E)+ F) = �.(	(E)+ F)

(�) 	(�.E + F) = �.(�.E + F)

(⊥) 	(a.E + F) = �.(a.E + F)

(ε) 	(E) = �.E

(⇑) 	(0) = �.0

Fig. 3. Implications between the distinguishing axioms.

The axioms (S1)− (S4), (�1)− (�3), and (rec1)− (rec4) are standard [13]. The axiom (rec5)makes
divergence explicit if introduced due to silent recursion; it defines the nature of the	-operator. Ax-
iom (rec6) states the redundancy of recursion on an unguarded variable in the context of divergence.

We discuss the distinguishing axioms in reverse order relative to the listing in Table 2. Axiom
(⇑) characterises the property of WB⇑ that divergence cannot be distinguished when terminating.
Axiom (ε) represents Milner’s ’fair’ setting, where divergence is never distinguished. The remaining
three axioms state that divergence cannot be distinguished if the expression can still perform an
action to escape the divergence (⊥), that it cannot be distinguished if the expression can perform
a silent step to escape divergence (�), and that two consecutive divergences cannot be properly
distinguished (⇑). It is a simple exercise to verify the implications between the distinguishing ax-
ioms as summarised in the lattice in Fig. 3. It nicely reflects the inclusions between the respective
congruences. The upper axioms turn into derivable laws given the lower ones (plus the core axioms
from Table 1) as axioms.



M. Lohrey et al. / Information and Computation 203 (2005) 115–144 123

Axiom (ε) is the same as axiom R4 in [14] (where recX.(�.X + E) should be read as 	(E)), and
has appeared in [4] in a slightly different form. A version of (�) has appeared in [4] in the context
of failure semantics, and in [10] in the context of weak Markovian bisimulation, only that 	 is a
constant rather than a unary operation. Axiom (⇑) has been suggested in [3] (also with 	 as a
constant) although no model has been provided. To the best of our knowledge, the other axioms
have not appeared in the literature.

5. Soundness

This section is devoted to the soundness of the axioms for ��:

Theorem 3. If E, F ∈ � and E =� F then E �� F.

Recall that a strong bisimulation is a symmetric relationR ⊆ � × � such that for all (P ,Q) ∈ R
the following condition holds (see also [12]):

if P
a−→ P ′, then ∃Q′ : Q a−→ Q′ and (P ′,Q′) ∈ R.

Wewrite P ∼ Q if there exists some strong bisimulationR containing the pair (P ,Q). The following
lemma is easy to see.

Lemma 9. It holds that ∼ ⊆ �⇑ .

Proof of Theorem 3. Due to the definition of �� for expressions with free variables, it suffices to
check the soundness of the axioms only for � . First we check the core axioms from Table 1, which
have to be verified for our finest congruence �⇑:

• (S1)− (S4), (rec1), (rec2), and (rec4) are sound for ∼ [12].
• (rec3): see Theorem 13 from Appendix B. 7

• (�1), (�2), and (�3): Soundness for�⇑ can be shown analogously to the soundness for�, see e.g.,
[13].

• (rec5) and (rec6): see Appendix C.

We continue with the distinguishing axioms from Table 2.
(⇑): We need to prove that	(	(P)+ Q) �⇑ �.(	(P)+ Q). The symmetric closure of the relation

{〈	(	(P)+ Q), �.(	(P)+ Q)〉, 〈	(	(P)+ Q),	(P)+ Q)〉} ∪ Id�

can be shown to be a WB⇑. Furthermore,

〈	(	(P)+ Q), �.(	(P)+ Q)〉
satisfies the root condition, thus 	(	(P)+ Q) �⇑ �.(	(P)+ Q).

7 Note that (rec3) is also sound for ∼ [12], but since (rec3) has the form of an implication, this does not imply the
soundness with respect to �⇑.
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(⇑): We need to prove that	(0) �⇑ �.0. It is not difficult to prove that the symmetric closure of
{〈	(0), �.0〉, 〈	(0), 0〉} is a WB⇑ and that 〈	(0), �.0〉 satisfies the root condition.

(�): We have to prove that 	(�.P + Q) �� �.(�.P + Q). It is not difficult to prove that the sym-
metric closure of

{〈	(�.P + Q), �.(�.P + Q)〉, 〈	(�.P + Q), �.P + Q〉} ∪ Id�

is a WB� and that 〈	(�.P + Q), �.(�.P + Q)〉 satisfies the root condition.
(⊥): We have to prove that 	(a.P + Q) �⊥ �.(a.P + Q). The symmetric closure of

{〈	(a.P + Q), �.(a.P + Q)〉, 〈	(a.P + Q), a.P + Q〉} ∪ Id�

is a WB⊥ and the pair 〈	(a.P + Q), �.(a.P + Q)〉 satisfies the root condition.
(ε): We have to show that 	(P) � �.P . The symmetric closure of

{〈	(P), �.P 〉, 〈	(P), P 〉} ∪ Id�

is a WB and 〈	(P), �.P 〉 satisfies the root condition. �

6. Derived laws

A few laws, derivable with the axioms for �⇑ (and thus for all ��) give further insight, and will
be useful for the further discussion. Since we have already shown soundness, these laws are also
valid for �⇑ instead of =⇑.
Lemma 10. The following laws can be derived:

(⇑1) 	(E) =⇑ 	(E)+ E

(⇑2) 	(E) =⇑ �.	(E)+ E

(⇑3) 	(E) =⇑ �.	(E)

(rec7) recX.(�.(X + E)+ F) =⇑ recX.(�.X + E + F)

Proof. First we derive (⇑2) as follows, where X ∈ � \�(E):

	(E) =⇑ recX.	(E) (rec2)
=⇑ recX.	(0+ E) (S4)
=⇑ recX.(�.(X + 0)+ E) (rec5)
=⇑ �.(recX.(�.(X + 0)+ E)+ 0)+ E (rec2)
=⇑ �.(recX.	(0+ E)+ 0)+ E (rec5)
=⇑ �.(recX.	(E))+ E (S4)
=⇑ �.	(E)+ E (rec2)
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Now (⇑3) can be deduced as follows:

�.	(E) =⇑ �.	(E)+	(E) (�2)
=⇑ �.	(E)+ �.	(E)+ E (⇑2)

=⇑ �.	(E)+ E (3)
=⇑ 	(E) (⇑2)

Law (⇑1) is a straight-forward consequence of (⇑2) and (S3):

	(E) =⇑ �.	(E)+ E =⇑ �.	(E)+ E + E =⇑ 	(E)+ E

Finally for (rec7) note that by (rec5) both expressions can be transformed into recX.	(E + F).
�
Lemma 11. If E

�−→, then there are G,H ∈ � with E =⇑ �.G + H.

Proof. We prove the lemma by induction on the structure of E. The case E ≡ �.F is trivial. If
E ≡ 	(F), then with the derived law (⇑2) we obtain E ≡ 	(F) =⇑ �.	(F)+ F . If E ≡ E1 + E2, then
w.l.o.g. we may assume that E1

�−→, which allows us to conclude inductively. Finally, if E ≡ recX.F ,
then Lemma 6 implies that F

�−→. Thus, by induction, we have F =⇑ �.G + H . Hence, using axiom
(rec2) we obtain

E =⇑ recX.(�.G + H) =⇑ �.G{recX.(�.G + H)/X } + H {recX.(�.G + H)/X } �

Analogously to the previous lemma, we can prove the following lemma:

Lemma 12. If E −→, then there exist G,H ∈ � and a ∈ � with E =⇑ a.G + H.

Lemma 13. If E⊥, then E =⇑ ∑
Y ∈�(E) Y.

Proof. The case E ∈ {0} ∪ � is clear. The case E ≡ E1 + E2 can be dealt with inductively. Finally, if
E ≡ recX.F , then Lemma 6 implies that F⊥. Thus, by induction, F =⇑ ∑

Y ∈�(F) Y . If X �∈ �(F), i.e.,
�(E) = �(F), then E =⇑ recX.(

∑
Y ∈�(F) Y) =⇑

∑
Y ∈�(E) Y with axiom (rec2). Otherwise, we have

�(F) = �(E) ∪ {X }. Then

E =⇑ recX.


X +

∑
Y ∈�(E)

Y


 =⇑ recX.


 ∑

Y ∈�(E)

Y


 =⇑

∑
Y ∈�(E)

Y

using axiom (rec4) and (rec2). �
The next lemma only holds for =⇑.

Lemma 14. If E ��⇒ P⊥ for some P ∈ � , then there are G,H ∈ � with E =⇑ 	(G)+ H.

Proof. First note that P⊥ and �(P) = ∅ imply P =⇑ 0 by Lemma 13. The case E ≡ 	(F) is clear. If
E ≡ �.F , then E

�−→ F �⇒ P . In case F ≡ P , we obtain E =⇑ �.0 =⇑ 	(0). On the other hand, if
F

��⇒ P , then by induction we get F =⇑ 	(G)+ H for G,H ∈ � . Hence, E =⇑ �.(	(G)+ H) =⇑



126 M. Lohrey et al. / Information and Computation 203 (2005) 115–144

	(	(G)+ H). If E ≡ E1 + E2, then w.l.o.g. we may assume that E1
��⇒ P . Inductively we get E1 =⇑

	(G)+ H for G,H ∈ � . Thus, E =⇑ 	(G)+ H + E2. Finally, assume that E ≡ recX.F . Thus,
recX.F

��⇒ P⊥. Using Lemma 3 and 6, we obtain F
��⇒ F ′ for some expression F ′ with F ′{E/X } ≡

P⊥. Thus, F ′⊥ and �(F ′) = ∅, i.e., F ′ ∈ � (note that E −→). By induction we obtain F =⇑ 	(G)+
H for G,H ∈ � . Thus, E =⇑ recX.(	(G)+ H) =⇑ 	(G{recX.(	(G)+ H)/X })+ H {recX.(	(G)+
H)/X }. �

7. Completeness

To show completeness, i.e., that E �� F implies E =� F , we proceed along the lines of [13], except
for the treatment of expressions from � \� . We will work as much as possible in the setting ofWB⇑,
the finest setting.

We do not consider � = ε in the sequel because by using axiom (ε), for every E ∈ � we find an E′
such that E′ does not contain the 	-operator and E =ε E′. This allows us to apply Milner’s result
[13] that in the absence of the	-operator the axioms from Table 1 together with (rec7) andMilner’s
law recX(�.X + E) = recX(�.E) are complete for�ε. The latter law follows immediately from (rec5)
and (ε).

7.1. A road map through the completeness proof

As already mentioned, our completeness proof proceeds along the lines of [13]. A first step is
achieved in Section 7.2.We show that every expression canbe transformed into a guarded expression
using the axioms for �⇑ (Theorem 4). This allows to concentrate on guarded expressions in the
rest of the proof. The presence of the 	-operator makes the proof of Theorem 4 slightly more
complicated than the corresponding proof from [13].

Section 7.3 introduces themain technical tool for the completeness proof: equation systems.These
are basically recursive definitions of formal process variables, which allow to eliminate the rec-
operator. Analogously to process expressions we define the notion of a guarded equations system.
To simplify the further reasoning, we have to use a very restricted form of equation systems that
we call standard equation systems. We also introduce a technical condition on standard equation
systems called saturatedness. Theorem 5 states that for every guarded expression E we can find
a guarded and saturated standard equations system E such that E provably satisfies E . The latter
means that if we substitute the formal process variables of E with concrete expressions (where E is
one of these expressions), then for every equation the left- and right-hand side of the equation can
be transformed into each other using the axioms for ��. Section 7.3 finishes with a further result,
stating that if two expressions E and F both provably satisfy the same guarded equation system
then E =� F (Theorem 6). For this result, we can reuse the proof of the corresponding result from
[13].

To finish the completeness proof, we need one further result, which is themain technical difficulty:
In Section 7.4, we show that if P and Q are guarded expressions without free variables such that
P �� Q and both P and Q provably satisfy a guarded and saturated standard equation system,
then we can find a single guarded equation system E such that both P and Q provably satisfy E
(Theorem 7). For the proof of this result it is crucial that we restrict to expressions without free
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variables, which differs from the corresponding proof in [13]. Completeness for expressions without
free variables follows easily from Theorem 4–7, see the proof of Theorem 8.

In Section 8, we extend completeness to expressionswith free variables. Here, wewill deviate from
Milner’s strategy. For �,⇑, and ⇑, we are able to deduce the completeness for arbitrary expressions
from the completeness for expressions without free variables, by analysing the corresponding ax-
ioms. For � = ⊥ we are only able to achieve completeness by introducing an additional axiom.

7.2. Reducing to guarded expressions

As in [13] the first step consists in transforming every expression into a guarded one:

Theorem 4. Let E ∈ � . There exists a guarded F with E =⇑ F (and thus �(E) = �(F )).

For the proof we need the following simple lemma.

Lemma 15. If X is unguarded in E ∈ � then E =⇑ E + X.

Proof.We prove the lemma by induction on the structure of E. Since X is unguarded in E we only
have to consider the following cases.

E ≡ X : By axiom (S3) we have X =⇑ X + X .
E ≡ �.F : we have

E ≡ �.F =⇑ �.F + F (�2)
=⇑ �.F + F + X (induction hypothesis)

=⇑ E + X (�2)
E ≡ 	(F): With the derived law (⇑1) from Lemma 10, we can conclude analogously to case 2.
E ≡ E1 + E2: W.l.o.g. assume that X is unguarded in E2. The induction hypothesis implies E2 =⇑

E2 + X . Thus, E ≡ E1 + E2 =⇑ E1 + E2 + X ≡ E + X .
E ≡ recY.F : Since X must be free in E we have X �≡ Y . The induction hypothesis implies F =⇑

F + X . Thus, F {recY.F/Y } =⇑ F {recY.F/Y } + X . Axiom (rec2) implies recY.F =⇑ recY.F + X . �
Proof of Theorem 4. The proof follows [13]. We prove the theorem by an induction on the structure
of the expression E. Only the case E ≡ recX.E′ is interesting. For this case, we prove the following
stronger statement ( ).

Let E ∈ � . Then there exists a guarded F such that

• X is guarded in F ,
• there does not exist a free and unguarded occurrence of a variable Y ∈ �(F)which lies within
a subexpression recZ.G of F ,8 and

• recX.E =⇑ recX.F .

We prove ( ) by an induction on the nesting depth d(E) of recursions in E. We have for instance
d(recX.(a.recY.(a.X + b.Y)+ a.(recX.(recX.(�))))) = 3. First, we consider the following case (Ð):

8 A specific free occurrence of Y in F is called unguarded if this occurrence does not lie within a subexpression a.F ′ with
a /= �.
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There does not exist a free and unguarded occurrence of a variable Y ∈ �(E) which lies within a
subexpression recZ.G of E.

This case also covers the induction base d(E) = 0. So assume that E satisfies (Ð). It remains to
remove all unguarded occurrences of X in E. Since E satisfies (Ð) we know that no unguarded
occurrence of X in E lies within a recursion. If X is guarded in E we are ready. So assume that X
occurs unguarded in E. We now list several reduction steps which when iteratively applied to E

terminate with an expression F that satisfies ( ). During this reduction process, we either eliminate
an unguarded occurrence of X or we reduce the number of �-guards and	-operators that proceed
an unguarded occurrence of X . Since, as already remarked, no unguarded occurrence of X in E lies
within a recursion, every unguarded occurrence of X in E can only lie within the scope of �-prefixes,
+, and 	-operators. Thus, one of the following four cases must apply.

Case 1. E ≡ �.(X + E′)+ F ′ (if E′ (F ′) is in fact empty, then we may add a 0-expression for E′
(F ′) to obtain the desired form): with the derivable law (rec7), we get

recX.E ≡ recX(�.(X + E′)+ F ′) =⇑ recX.(�.X + E′ + F ′).

We continue with the expression �.X + E′ + F ′.
Case 2. E ≡ �.E′ + F ′, where X is unguarded in E′, but X is weakly guarded in E′: Lemma 15

implies E′ =⇑ X + E′. Thus, E =⇑ �.(X + E′)+ F ′. By case 1 we can continue with the expression
�.X + E′ + F ′.

Case 3. E ≡ 	(X + E′)+ F ′: With (rec5), (rec6), and (rec7) we get

recX.(	(X + E′)+ F ′) = ⇑recX.(	(E′ + F ′))
= ⇑recX.(�.(X + E′)+ F ′)
= ⇑recX.(�.X + E′ + F ′).

We continue with the expression �.X + E′ + F ′.
Case 4. E ≡ 	(E′)+ F ′, where X is unguarded in E′, but X is weakly guarded in E′: again by

Lemma 15 we have E′ =⇑ X + E′. Thus, E =⇑ 	(X + E′)+ F ′. An application of case 3 gives the
expression �.X + E′ + F ′.

By iterating these four reduction steps we finally arrive at an expression, where all unguarded
occurrences of X in E occur in the form E ≡ X + · · · or E ≡ �.X + . . .. Furthermore, by axiom (S3)
and (�2) we may assume that there exists at most one occurrence of this form. Thus, it remains to
consider the following two cases:

Case 5. E ≡ X + E′: By axiom (rec4) we have

recX.E ≡ recX.(X + E′) =⇑ recX.E′.

Case 6. E ≡ �.X + E′: By axiom (rec5) we have

recX.E ≡ recX.(�.X + E′) =⇑ recX.(	(E′)).

Note that X is guarded in 	(E′) if X is guarded in E′. This concludes the consideration of case (Ð).
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It remains to consider the cases that are not covered by (Ð). For this let us choose a subexpression
recX ′.E′ of E such that this subexpression does not lie within another recursion, thus recX ′.E′ is
an outermost recursion. Since d(E′) < d(E), the induction hypothesis implies that there exists an
expression F with the following properties:

• X ′ is guarded in F .
• There does not exist a free and unguarded occurrence of a variable Y ∈ �(F) which lies within a
subexpression recZ.G of F .

• recX ′.E′ =⇑ recX ′.F

It follows that in the expression F {recX ′.F/X ′} there does not exist an unguarded occurrence of
any variable which lies within a recursion. Axiom (rec2) allows us to replace recX ′.E′ within E by
F {recX ′.F/X ′}. If we perform this step for every outermost recursion of E, we obtain an expression
that satisfies (Ð). This concludes the proof. �

Beforeweproceedwithprovingcompleteness, letusfirstderiveauseful consequenceofTheorem4.

Lemma 16. If E ⇑, then there are G,H ∈ � with E =⇑ 	(G)+ H.

Proof.We prove the lemma by induction on the structure of E. By Theorem 4 we may assume
that E is guarded . The case E ≡ 	(F) is trivial. If E ≡ �.F then we must have F ⇑. Thus,
inductively, we obtain F =⇑ 	(G)+ H for expressions G and H . Hence, E =⇑ �.(	(G)+ H) =⇑
	(	(G)+ H) with axiom (⇑). If E ≡ E1 + E2 then w.l.o.g. we may assume that E1 ⇑, which
allows to conclude inductively. Finally, if E ≡ recX.F , then by Lemma 7, either F ⇑ or F

��⇒
F ′ for some F ′ such that X is totally unguarded in F ′. But in the latter case, X would be
unguarded in F and hence recX.F would be unguarded. Thus, F ⇑. By induction, we obtain
F =⇑ 	(G)+ H for expressions G and H . Thus, F =⇑ recX.(	(G)+ H) =⇑ 	(G{recX.(	(G)+
H)/X })+ H {recX.(	(G)+ H)/X }. �

7.3. Equation systems

The basic ingredient of our completeness proof are equations systems. Let V ⊆ � be a set of
variables and let �X = (X1, . . . ,Xn) be a sequence of variables, where Xi �∈ V . An equation system over
the free variables V and the formal variables �X is a set of equations E = {Xi = Ei | 1 � i � n} such
that Ei ∈ � and �(Ei) ⊆ {X1, . . . ,Xn} ∪ V for 1 � i � n. Let �F = (F1, . . . , Fn) be an ordered sequence
of expressions. Then �F �-provably satisfies the equation system E if Fi =� Ei{�F / �X } for all 1 � i � n.
An expression F �-provably satisfies E if there exists a sequence of expressions (F1, . . . , Fn), which
�-provably satisfies E and such that F ≡ F1. We say that E is guarded if there exists a linear order
≺ on the variables {X1, . . . ,Xn} such that whenever the variable Xj is unguarded in the expression
Ei then Xj ≺ Xi . The equation system E is called a standard equation system (SES) over the free
variables V and the formal variables (X1, . . . ,Xn) if there exists a partition {X1, . . . ,Xn} = )* ∪)	

(with )* ∩)	 = ∅) such that for every 1 � i � n,

• if Xi ∈ )*, then Ei is a sum of expressions a.Xj (a ∈ � , 1 � j � n) and variables Y ∈ V , and
• ifXi ∈ )	, thenEi ≡ 	(E′i ), whereE′i is a sumof expressions a.Xj (a ∈ � , 1 � j � n) and variables

Y ∈ V .
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W.l.o.g. we may assume that X1 ∈ )*. If X1 ∈ )	, then we can introduce a new formal variable
X0 and add the equation X0 = �.X1—this is justified by the derived law (⇑3). We write Xi

a−→E Xj

if Ei
a−→ Xj . With �⇒E we denote the reflexive and transitive closure of

�−→E . The relations
a�⇒E

and â�⇒E are derived from these relations as usual. If the SES E is clear from the context, then
we will omit the subscript E in these relations. Note that E is guarded if and only if the relation
�−→E is acyclic. Finally, we say that the SES E is saturated if for all 1 � i, j � n, and Y ∈ V we

have:

(1) If Xi
a�⇒ Xj , then also Xi

a−→ Xj .
(2) If Xi �⇒ Xj and Y occurs in Ej , then Y occurs already in Ei .

Let us consider an example:

Example 1. Let E ≡ recX.(a.�.X)+	(b.0), which is guarded. The part of the transition system that
is rooted at E looks as follows:

By introducing for every node a formal variable X1, we see that E ⇑-provably satisfies the following
guarded SES E :

X1 = a.X2 + b.X3 + �.X4,

X2 = �.X5,

X3 = 0,

X4 = 	(b.X3),

X5 = a.X2.

Note that E is not saturated. But E also satisfies the following guarded and saturated SES:

X1 = a.X2 + b.X3 + �.X4 + a.X5,

X2 = �.X5 + a.X2,

X3 = 0,

X4 = 	(b.X3),

X5 = a.X2.
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It is worth to highlight that the required partitioning of formal variables into)* and)	 induces
standard equation systems with a distinguished structure. This structure is crucial to carry over
Milner’s saturation property in the presence of the 	-operator:

Theorem 5. Every guarded E ∈ � �-provably satisfies a guarded and saturated SES over the free
variables �(E).

Proof. First we prove by induction on the structure of the expression E that E �-provably satisfies
a guarded SES E over the free variables �(E) and the formal variables (X1, . . . ,Xm). Furthermore,
for the inductive proof we need the following property (§):

If Y ∈ �(E) is guarded in E then there does not exist i such that X1 �⇒ Xi and Y occurs in the
expression Ei, where Xi = Ei is an equation of E .

E ≡ 0 or E ∈ � : trivial
E ≡ a.F : By induction F �-provably satisfies a guarded SES E over the free variables�(F) and the

formal variables (X1, . . . ,Xm). Then a.F �-provably satisfies the guarded SES {X0 = a.X1} ∪ E over
the free variables �(E) and the formal variables (X0, . . . ,Xm). Furthermore, this new SES satisfies
(§) if E satisfies (§).

E ≡ 	(F): Again let E be a guarded SES over the free variables �(F) and the formal variables
(X1, . . . ,Xm) that is �-provably satisfied by F . Assume that the equation X1 = E1 belongs to E ,
where w.l.o.g. X1 ∈ )*. Then 	(F) �-provably satisfies the guarded SES {X0 = 	(E1)} ∪ E over
(X0, . . . ,Xm). Furthermore, this new SES satisfies (§) if E satisfies (§).

E ≡ F + G: Assume that F (resp. G) �-provably satisfies the guarded SES E (resp. F) over the
free variables �(F) (resp. �(G)) and the formal variables (X1, . . . ,Xm) (resp. (Y1, . . . , Yn)), where
w.l.o.g. {X1, . . . ,Xm} ∩ {Y1, . . . , Yn} = ∅. Assume that the equations X1 = F1 and Y1 = G1 belong to E
and F , respectively, where w.l.o.g. X1, Y1 ∈ )*. Then F + G �-provably satisfies the guarded SES
{Z = F1 + G1} ∪ E ∪ F over the formal variables (Z ,X1, . . . ,Xm, Y1, . . . , Yn). Furthermore, this new
SES satisfies (§) if E and F satisfy (§).

E ≡ recX0.F , where X0 is guarded in F : The case X0 �∈ �(F) is trivial, thus assume that X0 ∈ �(F).
Let F �-provably satisfy the guarded SES E over the free variables �(F) and the formal variables
(X1, . . . ,Xm). Assume that E satisfies (§) and assume that the equation X1 = E1 belongs to E , where
w.l.o.g. X1 ∈ )*. By replacing every right-hand side Ei of an equation of E by Ei{E1/X0} we obtain
a new SES F . Note that due to (§), the free variable X0 does not appear as a summand in E1, hence
X0 does not occur in the SES F . Then recX0.F �-provably satisfies the SES {X0 = E1} ∪ F over the
formal variables (X0, . . . ,Xm) and the free variables �(E) = �(F)\{X0}. Moreover, since E satisfies
(§), this new SES is guarded and satisfies again (§).

It remains to transform a guarded SES E , which is �-provably satisfied by an expression E, into
a guarded and saturated SES, which is also �-provably satisfied by E. We only show, how the first
condition of the definition of a saturated SES can be enforced by induction on the length of the
transition sequence Xi

a�⇒ Xj , the second condition on free variables can be enforced similarly.
First assume that for E we have Xi

�−→ Xk
a�⇒ Xj for some k . By induction we may assume that

already Xi
�−→ Xk

a−→ Xj . First assume that Xk ∈ )*. Let Xk = a.Xj + Ek be the equation defining
Xk . The equation defining Xi is either of the form Xi = �.Xk + Ei or of the form Xi = 	(�.Xk + Ei).
In both cases we can use axiom (�2) to replace this equation by Xi = �.Xk + a.Xj + Ek + Ei or
Xi = 	(�.Xk + a.Xj + Ek + Ei), respectively. Now assume that Xk ∈ )	 and let Xk = 	(a.Xj + Ek)
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be the equation defining Xk . Since	(a.Xj + Ek) =⇑ 	(a.Xj + Ek)+ a.Xj + Ek by the law (⇑1) from
Lemma 10 we can argue as in case Xk ∈ )*.

It remains to consider the case that E satisfies Xi
a−→�⇒ Xk

�−→ Xj for some k . By induction
we may assume that already Xi

a−→ Xk
�−→ Xj . First assume that Xk ∈ )* and let Xk = �.Xj + Ek

be the equation defining Xk . The equation defining Xi is either of the form Xi = a.Xk + Ei or of the
form Xi = 	(a.Xk + Ei). We can use axiom (�3) to replace this equation by Xi = a.Xk + a.Xj + Ei

or Xi = 	(a.Xk + a.Xj + Ei), respectively. Now assume that Xk ∈ )	 and let Xk = 	(�.Xj + Ek) be
the equation defining Xk . Since 	(�.Xj + Ek) =⇑ 	(�.Xj + Ek)+ �.Xj + Ek by the law (⇑1) from
Lemma 10 we can argue as in case Xk ∈ )*. The resulting SES is still �-provably satisfied by E, it
is guarded, and it satisfies Xi

a−→ Xj . �
Using axiom (rec3), the following theorem can be shown analogously to [13].

Theorem 6. Let E, F ∈ � and let E be a guarded (not necessarily standard) equation system such that
both E and F �-provably satisfy E . Then E =� F.

7.4. Joining two equation systems

In this section, we will restrict to expressions from � . The main technical result of this section is

Theorem 7. Let P ,Q ∈ � such that P �� Q.Furthermore, P (resp. Q) �-provably satisfies the guarded
and saturated SES E1 = {Xi = Ei | 1 � i � m} (resp. E2 = {Yj = Fj | 1 � j � n}). Then there exists a
guarded equation system E such that both P and Q �-provably satisfy E .
Let us postpone the proof of Theorem 7 for a moment and first see how completeness for � can be
deduced:

Theorem 8. If P ,Q ∈ � and P �� Q, then P =� Q.

Proof. By Theorem 4, both P and Q can be turned into guarded expressions P ′,Q′ ∈ � via the
axioms for �⇑. Due to soundness, we still have P ′ �� Q′. By Theorem 5, P ′ (resp. Q′) �-provably
satisfies a guarded and saturated SES E1 (resp. E2) without free variables. ByTheorem 7 there is some
guarded equation system E which is �-provably satisfied by P ′ and Q′. Theorem 6 gives P ′ =� Q′,
and hence P =� Q, concluding the proof. �

To prove Theorem 7, we need the following lemmas.

Lemma 17.Let E = {Xi = Ei | 1 � i � n} be a guarded SESwithout free variables,which is�-provably
satisfied by (P1, . . . , Pn). If Pi ≈� P

â�⇒ Q, then Xi
â�⇒ Xk and Q ≈� Pk for some k.

Proof. Since E is guarded there exists a linear order≺ on the formal variables {X1, . . . ,Xn} such that
Xi

�−→ Xk implies Xk ≺ Xi . We prove the lemma by an induction along the order ≺.
Let us first consider the case a = �, i.e, P �⇒ Q. The case P ≡ Q is trivial. Thus, assume that

P
�−→ R �⇒ Q. Then P ≈� Pi �� Ei{�P/ �X } implies Ei{�P/ �X } �⇒ R′ and R ≈� R′ for some R′. If

Ei{�P/ �X } ≡ R′ then we have R ≈� R′ �� Pi . Since the transition sequence R �⇒ Q is shorter than
the original sequence P

��⇒ Q, we can conclude by an induction on the length of the transition
sequence. Thus, assume that Ei{�P/ �X } �−→ P ′ �⇒ R′, where P ′ �≡ Ei{�P/ �X }. We obtain P ′ ≡ Pj and
Xi

�−→ Xj for some j. Since Xj ≺ Xi and Pj �⇒ R′ we obtain inductively Xj �⇒ X- and R′ ≈� P- for
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some -. Finally R �⇒ Q, R ≈� R′ ≈� P- and X- ≺ Xi implies inductively X- �⇒ Xk andQ ≈� Pk for
some k .

Now assume that a /= �, i.e, P a�⇒ Q. Since P ≈� Pi �� Ei{�P/ �X }we get Ei{�P/ �X } a�⇒ R andQ ≈�

R for some R. If Ei{�P/ �X } a−→ Pj �⇒ R for some j, then Xi
a−→ Xj �⇒ Xk and Pk ≈� R ≈� Q for

some k by the previous paragraph. On the other hand, if Ei{�P/ �X } �−→ P ′ a�⇒ Rwith Ei{�P/ �X } �≡ P ′,
then P ′ ≡ Pj and Xi

�−→ Xj for some j. Thus, Xj ≺ Xi and by induction we get Xj
a�⇒ Xk and

Pk ≈� R ≈� Q for some k . �
For the further consideration it is useful to define for � ∈ {⇑,⇑, �,⊥} the property �∗ on � by

P�∗ if and only if
{
P� if � ∈ {⇑,⇑}
not P� if � ∈ {�,⊥} .

Lemma 18. If P�∗, then �.P =� 	(P).

Proof.We distinguish on the value of �.
� =⇑: Then P ⇑. Thus, by Lemma 16, we obtain P =⇑ 	(Q)+ R for expressions Q,R. Hence,

using axiom (⇑), �.P =⇑ �.(	(Q)+ R) =⇑ 	(	(Q)+ R) =⇑ 	(P).
� = �: Then P

�−→. Thus, by Lemma 11 there are Q,R ∈ � with P =⇑ �.Q + R. Hence, using
axiom (�), �.P =⇑ �.(�.Q + R) =� 	(�.Q + R) =⇑ 	(P).

� = ⊥: Analogously to the case � = � using Lemma 12 and axiom (⊥).
� = ⇑: Then P⇑. By Lemma 13, 14, and 16 we obtain either P =⇑ 0 or P =⇑ 	(Q)+ R for

some Q,R ∈ � . In the latter case, we can argue as in case � =⇑. If P =⇑ 0, then using axiom (⇑),
�.P =⇑ �.0 =⇑ 	(0) =⇑ 	(P). �

Now we are able to prove Theorem 7.

Proof ofTheorem7.Assume thatE1 is�-provably satisfiedby the expressions (P1, . . . , Pm) ∈ � , where
P ≡ P1, and that E2 is �-provably satisfied by the expressions (Q1, . . . ,Qn) ∈ � , whereQ ≡ Q1. Thus,
Pi =� Ei{�P/ �X }andQj =� Fj{ �Q/�Y }, andhenceby soundness alsoPi �� Ei{�P/ �X }andQj �� Fj{ �Q/�Y }.
Since P ,Q ∈ � , both E1 and E2 do not have free variables. Moreover, w.l.o.g. X1, Y1 ∈ )*.

Claim 1. If Pi ≈� Qj , then the following implications hold:

(1) If Xi
a−→ Xk , then either (a = � and Pk ≈� Qj) or Yj

a−→ Y- and Pk ≈� Q- for some -.
(2) If Yj

a−→ Y-, then either (a = � and Pi ≈� Q-) or Xi
a−→ Xk and Pk ≈� Q- for some k .

By symmetry it suffices to show the first statement. Assume thatXi
a−→ Xk . ThusEi{�P/ �X } a−→ Pk .

Since Ei{�P/ �X } �� Pi ≈� Qj , we have Qj
â�⇒ R for some R with Pk ≈� R. By Lemma 17 we obtain

Yj
â�⇒ Y- and Pk ≈� R ≈� Q- for some -. Since E2 is saturated we obtain the conclusion of Claim 1.

The following claim can be shown analogously:
Claim 2. If Pi �� Qj , then the following implications hold:

(1) If Xi
a−→ Xk , then Yj

a−→ Y- and Pk ≈� Q- for some -.
(2) If Yj

a−→ Y-, then Xi
a−→ Xk and Pk ≈� Q- for some k .



134 M. Lohrey et al. / Information and Computation 203 (2005) 115–144

Let I = {(i, j) | 1 � i � m, 1 � j � n, Pi ≈� Qj}. For every (i, j) ∈ I let Zi,j be a new variable and
let �Z = (Zi,j)(i,j)∈I . Furthermore, for (i, j) ∈ I we define

Hi,j ≡
∑
{a.Zk ,- | Xi

a−→ Xk , Yj
a−→ Y-, Pk ≈� Q-} +∑

{�.Zk ,j | Xi
�−→ Xk , ¬∃- (Yj �−→ Y- ∧ Pk ≈� Q-)} +∑

{�.Zi,- | Yj �−→ Y-, ¬∃k (Xi
�−→ Xk ∧ Pk ≈� Q-)}

Gi,j ≡
{
Hi,j if Xi, Yj ∈ )* and
	(Hi,j) if Xi ∈ )	 or Yj ∈ )	.

Now the equation system E over the formal variables �Z contains for every (i, j) ∈ I the equation
Zi,j = Gi,j . From the guardedness of E1 and E2 it follows easily that also E is guarded. Before we
continue with the proof, let us consider an example:

Example 2. Let P = b.	(a.0+ a.�.0)+ c.0 and Q = b.	(a.0)+ c.0+ c.�.0. Clearly, we have P �⇑
Q. The expression P ⇑-provably satisfies the following guarded and saturated SES:

X1 = b.X2 + c.X3,

X2 = 	(a.X3 + a.X4),

X3 = 0,

X4 = �.X3.

To see this, choose P1 = P , P2 = 	(a.0+ a.�.0), P3 = 0, and P4 = �.0. The expression Q ⇑-
provably satisfies the following guarded and saturated SES:

Y1 = b.Y2 + c.Y3 + c.Y4,

Y2 = 	(a.Y3),

Y3 = 0,

Y4 = �.Y3.

This can be seen by choosing Q1 = Q, Q2 = 	(a.�.0), Q3 = 0, and Q4 = �.0. We obtain I = {(1, 1),
(2, 2), (3, 3), (3, 4), (4, 3), (4, 4)} and thus

G1,1 = b.Z2,2 + c.Z3,3 + c.Z3,4,

G2,2 = 	(a.Z3,3 + a.Z4,3),

G3,3 = 0,

G3,4 = G4,3 = G4,4 = �.Z3,3.

We will show that P �-provably satisfies E ; that also Q �-provably satisfies E can be shown
analogously.For thiswedefine for every (i, j) ∈ I an expressionRi,j . Let usfix (i, j) ∈ I , thusPi ≈� Qj .
For our further considerations the following to complementary cases will be crucial.
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∀-, a
{
Yj

a−→ Y- ⇒ ∃k (Xi
a−→ Xk ∧ Pk ≈� Q-)

}
, (1)

∃-
{
Yj

�−→ Y- ∧ ¬∃k(Xi
�−→ Xk ∧ Pk ≈� Q-)

}
. (2)

We define Ri,j by

Ri,j ≡
{
Pi if Xi ∈ )	 or (Xi, Yj ∈ )* and (1)),
�.Pi if (Xi ∈ )* and Yj ∈ )	) or (Xi, Yj ∈ )* and (2)).

Let �R = (Ri,j)(i,j)∈I . Note that R1,1 ≡ P1 ≡ P by P1 �� Q1 and Claim 2.2 (recall that X1, Y1 ∈ )*).
Hence, it remains to prove Ri,j =� Gi,j{�R/�Z}.

Case 1. Xi ∈ )*: Using Claim 1 and axiom (�1) and (S1)–(S3) we obtain

Hi,j{�R/�Z} =⇑
{
Ei{�P/ �X } =� Pi if (1)
Ei{�P/ �X } + �.Pi =� Pi + �.Pi =⇑ �.Pi if (2).

This step is analogous to [13]. If moreover Yj ∈ )*, then the definition of Ri,j implies Ri,j =�

Hi,j{�R/�Z} ≡ Gi,j{�R/�Z}. On the other hand, if Yj ∈ )	, thenQj �� Fj{ �Q/�Y } ≡ 	(Q′) for someQ′.We
have to showthat �.Pi ≡ Ri,j =⇑ 	(Hi,j{�R/�Z}). If (2), then	(Hi,j{�R/�Z}) =� 	(�.Pi). But (�.Pi)�∗. For
� ∈ {�,⊥} this is clear, whereas for � ∈ {⇑,⇑}, Pi ≈� Qj �� 	(Q′) implies Pi�∗ (and thus (�.Pi)�∗).
Hence, with Lemma 18 we obtain 	(�.Pi) =� �.�.Pi =⇑ �.Pi . If (1), then 	(Hi,j{�R/�Z}) =� 	(Pi). We
claim that Pi�∗, which implies again 	(Pi) =� �.Pi with Lemma 18. If � ∈ {⇑,⇑}, then we already
argued above that Pi�∗. For � = � let us assume that Pi� To deduce a contradiction. We have
Pi ≈� Qj �� 	(Q′). Since Pi�, 	(Q′) has to move silently into a stable expression. Thus, Q′ �−→,
i.e., Yj

�−→ Y- for some -. Then (1) implies that also Xi
�−→ Xk for some k . Thus, Pi �� Ei{�P/ �X } �−→,

i.e., Pi
�−→, a contradiction to Pi�. If � = ⊥, then we can argue analogously.

Case 2. Xi ∈ )	: Then Ei ≡ 	(E′i ) for a sum E′i . Analogously to Case 1 we have

Hi,j{�R/�Z} =⇑
{
E′i{�P/ �X } if (1),
E′i{�P/ �X } + �.Pi if (2).

Let P ′ ≡ E′i{�P/ �X }, thus Pi =� 	(P ′). We have to check Pi ≡ Ri,j =� 	(Hi,j{�R/�Z}). If (1), then
	(Hi,j{�R/�Z}) =⇑ 	(P ′) =� Pi . On the other hand, if (2), then

	(Hi,j{�R/�Z}) =⇑ 	(P ′ + �.Pi) =�

	(P ′ + �.	(P ′)) =⇑ 	(	(P ′)) =⇑ �.	(P ′) =� 	(P ′) =� Pi.

This concludes the proof of Theorem 7 and hence of Theorem 8. �
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8. Completeness for open expressions

In the previous section, we proved completeness only for expressions without free variables.
Recall that for arbitrary expressions E, F ∈ � , we have E �� F if and only if for all �P we have
E{�P/ �X } �� F {�P/ �X }. Here �X is a sequence of variables that contains all variables from �(E) ∪ �(F),
and �P is an arbitrary sequence over � of the same length. To prove completeness for the whole set
� , we will argue in a purely syntactical way by investigating our axioms.

Definition 1. A proof tree for E = F is a rooted tree T . The root of T is labeled with E = F , and
every leaf v of T is either labeled with an identity A = A or with an instance of an axioms for ��. If
v is an internal node of T , then either

(1) v is labeled with an identity G = recX.H , and v has exactly one child u which is labeled with
the identity G = H {G/X }, where X is guarded in H , or

(2) v is labeled with an identity G1 = G3, and v has exactly two children v1 and v2 that are labeled
with identities G1 = G2 and G2 = G3, respectively.

(3) v is labeled with an identity G1 + H1 = G2 + H2, and v has exactly two children v1 and v2 that
are labeled with the identities G1 = G2 and H1 = H2, respectively, and similarly for the other
operators.

It is easy to see that E =� F if and only if there exists a proof tree for E = F . This allows to show
statements by induction on the size of proof trees.

For our further considerations let us fix a variable X and an action a ∈ � \ {�}. For an expression
E ∈ � let Ê be the expression that results from E by replacing every subterm of the form a.F by X .
In case E contains a subterm of the form recX.G such that G contains a subterm of the form a.F ,
then we first have to rename the bound variable X in recX.G to avoid new variable bindings.

Lemma 19. If E =� F and � /= ⊥, then also Ê =� F̂ .

Proof.We prove the lemma by induction on the size of a proof tree T for E = F . If T consists of a
single node, then there are two cases:

• If E ≡ F , then also Ê ≡ F̂ .
• Let E = F be an instance of an axiom for��. In most cases, Ê = F̂ is again an axiom for��. We
only consider those axioms that explicitly deal with the a.( )-operator:
(�1): E ≡ a.�.G and F = a.G. Then Ê ≡ X ≡ F̂ .
(�3): E ≡ a.(G + �.H) and F ≡ a.(G + �.H)+ a.H . Then Ê ≡ X =⇑ X + X ≡ F̂ with axiom (S3).

Note that we cannot deal with axiom (⊥): we have	(a.0) =⊥ �.a.0 but	(X) =⊥ �.X does not hold,
since �.0 ��⊥ 	(0). This is the reason for excluding � = ⊥ in the lemma.

For the inductive step we have to consider the three cases listed in Definition 1.

(1) The root of T is labeled with E ≡ G = recY.H ≡ F (w.l.o.g X /= Y ) and its child node is labeled
with G = H {G/Y } where Y is guarded in H . Then by induction Ĝ =� ̂H {G/Y } ≡ Ĥ {Ĝ/Y }.
Since Y is also guarded in Ĥ , we obtain Ĝ =� recY.Ĥ ≡ ̂recY.H .
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(2) The rootofT has twochildnodes that are labeledwith identitiesE = G andG = F , respectively.
Then by induction Ê =� Ĝ and Ĝ =� F̂ , which implies Ê =� F̂ .

(3) The root of T is labeled with E ≡ G1 + H1 = G2 + H2 ≡ F and its child nodes are labeled
with G1 = G2 and H1 = H2. Then by induction Ĝ1 =� Ĝ2 and Ĥ1 =� Ĥ2, i.e., Ê ≡ Ĝ1 + Ĥ1 =�

Ĝ2 + Ĥ2 ≡ F̂ . For the other operators we can argue analogously. �

Lemma 20. Let � /= ⊥ and E, F ∈ � . If a ∈ � \{�} does neither occur in E nor in F , then E{a.0/X } =�

F {a.0/X } implies E =� F.

Proof. Assume that E{a.0/X } =� F {a.0/X }. Since a does neither occur in E nor in F , we havêE{a.0/X } ≡ E and ̂F {a.0/X } ≡ F . Thus, Lemma 19 implies E =� F . �
Theorem 9. Let � /= ⊥ and E, F ∈ � . If E �� F then E =� F.

Proof. Let E �� F . We prove by induction on |�(E) ∪ �(F)| that E =� F . If �(E) ∪ �(F) = ∅, then
in fact E, F ∈ � and E =� F by Theorem 8. Thus, let X ∈ �(E) ∪ �(F). Since E �� F , we have
E{a.0/X } �� F {a.0/X }, where a ∈ � \{�} does neither occur in E nor in F . Thus, by induction
E{a.0/X } =� F {a.0/X } and hence E =� F by Lemma 20. �

To obtain a complete axiomatisation of �⊥ for open expressions, we have to introduce the
following additional axiom (⊥′)

(⊥′) If E{0/X } = F {0/X } and E{a.0/X } = F {a.0/X } where
a ∈ � \{�} does neither occur in E nor in F , then E = F .

This new axiom is indeed sound for �⊥:
Theorem 10. If E{0/X } �⊥ F {0/X } and E{a.0/X } �⊥ F {a.0/X }, where a ∈ � \{�} does neither occur
in E nor in F , then E �⊥ F.

Proof. Let E{0/X } �⊥ F {0/X } and E{a.0/X } �⊥ F {a.0/X } where a ∈ � \{�} does neither occur
in E nor in F . We have to show that E �⊥ F . Due to the definition of �⊥ for expressions with
free variables, it suffices to consider the case that �(E) ∪ �(F) = {X }. Thus, we have to show that
E{P/X } �⊥ F {P/X } for all P ∈ � . Fix an arbitrary P ∈ � . We distinguish the following two cases.

Case 1. P −→, i.e., not P⊥: We first claim that the symmetric closure of

R = Id� ∪ {〈G{P/X },H {P/X }〉 | a does not occur in G or H

and G{a.0/X } ≈⊥ H {a.0/X }}
is a WB⊥. Let us start with showing that R is a WB. Consider a pair 〈G{P/X },H {P/X }〉 ∈ R and

assume that G{P/X } b−→ P ′. By Lemma 3 we can distinguish the following two cases:

Case i.G
b−→ G′ andP ′ ≡ G′{P/X }. Thus,G{a.0/X } b−→G′{a.0/X }. SinceG{a.0/X }≈⊥H {a.0/X },

we have H {a.0/X } b̂�⇒ Q and G′{a.0/X } ≈⊥ Q for some Q. Note that G
b−→ G′ implies b /= a /= �.

Hence, by Lemma 3 we have H
b̂�⇒ H ′ and G′{a.0/X } ≈⊥ Q ≡ H ′{a.0/X }. Thus, H {P/X } b̂�⇒

H ′{P/X } and 〈G′{P/X },H ′{P/X }〉 ∈ R (note also that since a does not occur in G, G
b−→ G′ im-

plies that a does not occur in G′ as well, and similarly for H ,H ′).
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Case ii. P
b−→ P ′ and X is totally unguarded in G. Thus, G{a.0/X } a−→ 0. Since G{a.0/X } ≈⊥

H {a.0/X }, we obtain H {a.0/X } a�⇒. Using Lemma 3 and the fact that a ∈ � \{�} does not occur
in H it follows H �⇒ H ′ for some H ′ such that X is totally unguarded in H ′. Hence, H {P/X } �⇒
H ′{P/X } b−→ P ′.

It remains to show that R preserves ⊥. Let G{P/X }⊥. Lemma 4 implies that G⊥ and that X is
weakly guarded in G (recall that P −→). Thus, G{a.0/X }⊥, from which we obtain H {a.0/X } �⇒
H ′{a.0/X }⊥ for some H ′ with H �⇒ H ′⊥. Hence, X must be weakly guarded in H ′ (otherwise
H ′{a.0/X } a−→), and thus, H {P/X } �⇒ H ′{P/X }⊥. This concludes the proof that R is a WB⊥.
Hence R ⊆ ≈⊥.

Now let 〈G{P/X },H {P/X }〉 ∈ R be a pair such that not only G{a.0/X } ≈⊥ H {a.0/X } but
G{a.0/X } �⊥ H {a.0/X }. The same arguments, which have shown that R is a WB, together with
R ⊆ ≈⊥ show that 〈G{P/X },H {P/X }〉 satisfies the root conditions. Thus, G{P/X } �⊥ H {P/X }. In
particular, we obtain E{P/X } �⊥ F {P/X }. This finishes the proof for Case 1.

Case 2. P⊥. We first claim that the symmetric closure of

R = {〈G{P/X },H {P/X }〉 | G{0/X } �⊥ H {0/X }}

is a WB⊥. Analogously to case 1 we can show that R is a WB (note that Case ii cannot occur, since
P⊥). To show that R preserves⊥, consider a pair 〈G{P/X },H {P/X }〉 ∈ R withG{P/X }⊥. ThenG⊥.
Hence, also G{0/X }⊥, which implies H {0/X } �⇒ H ′{0/X }⊥ for some H ′ with H �⇒ H ′. Since we
assumed P⊥, it follows H {P/X } �⇒ H ′{P/X }⊥.

This finishes the proof that R is a WB⊥. The subsequent reasoning is completely analogous to
Case 1. �

If we add the axiom (⊥′) to the standard axioms for �⊥, then we can prove completeness in the
same way as in the proof of Theorem 9. Thus, we obtain:

Theorem 11. Let E, F ∈ � . If E �⊥ F then E =⊥ F can be derived by the standard axioms for �⊥
plus the axiom (⊥′).

9. Conclusion

This paper has developed sound and complete axiomatisations for the divergence sensitive spec-
trum of weak bisimulation equivalences. We have not covered the weak bisimulation preorders
WB↓ and WB↓↓ considered in [7]. We claim however that adding the axiom 	(E) � E + F to the
axioms of WB⇑ (resp. WB⇑) is enough to obtain completeness of WB↓↓ (resp. WB↓). Note that
WB↓ is axiomatised in [15], so only WB↓↓ needs further work.

The axiomatisation developed in this paper opens the way towards a complete equational char-
acterisation of the bisimulation fragment of the linear time—branching time spectrum with silent
moves. On the technical side, it is an open problemwhether the auxiliary axiom (⊥′) is indeed neces-
sary for achieving completeness of open expressions for�⊥. We have tried—but not succeeded—to
circumvent this somewhat unsatisfactory specific treatment via moving to alternative forms of
defining bisimulation on open expressions.
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Appendix A. Congruence with respect to rec

This section is devoted to the congruencepropertyof��with respect to recursion.LetS ⊆ � × �

be a symmetric relation. We say that S is an observational congruence up to≈� if S preserves � and:

( )
if (P ,Q) ∈ S and P

a−→ P ′ for P , P ′,Q ∈ � and a ∈ � ,
then Q

a�⇒ Q′ and P ′ S R ≈� Q′ for some R,Q′ ∈ �

Lemma 21. If S is an observational congruence up to ≈�, then S ⊆ �� .

Proof. First, note that ( ) implies that S◦≈� is a WB. Moreover, since both S and ≈� preserve �,
also S◦≈� preserves �. Thus, S◦≈� is a WB� and S◦≈� ⊆ ≈�.

Now assume that (P ,Q) ∈ S and P
a−→ P ′. Then ( ) and S◦≈� ⊆ ≈� implies that Q a�⇒ Q′ and

P ′ ≈� Q′ for some Q′ ∈ � . Furthermore, since S and ≈� are symmetric, also the symmetric root
condition holds. Thus, P �� Q. �

In order to prove recX.E �� recX.F if E �� F , it is sufficient to construct an observational con-
gruence up to≈� containing the pair (recX.E, recX.F). This will be done in Lemma 23. We will need
the following statement.

Lemma 22. Let E, F ∈ � such that �(E) ∪ �(F) ⊆ {X } and E �� F , i.e, E{P/X } �� F {P/X } for all
P ∈ � . Then the following holds:

(1) If E
��⇒ E′, where X is totally unguarded in E′, then also F

��⇒ F ′ for some F ′ such that X is
totally unguarded in F ′.

(2) If � =⇑ and E ⇑, then also F ⇑ .

(3) If � = ⇑ and E ⇑, then either F ⇑ or F
��⇒ F ′⊥ for some F ′ such that X is weakly guarded

in F ′.

Proof.We will only prove the last statement, the other statements can be shown similarly. Thus, as-
sume that�=⇑andE ⇑. Leta ∈ � \{�}. SinceE ⇑, alsoE{a.0/X } ⇑byLemma5.ThenE{a.0/X } �⇑
F {a.0/X } implies that either F {a.0/X } ⇑ or F {a.0/X } ��⇒ Q⊥ for some Q. If F {a.0/X } ⇑, then
Lemma 5 implies F ⇑. If F {a.0/X } ��⇒ Q⊥, then a /= � and Lemma 3 imply Q ≡ G{a.0/X } and
F

��⇒ G for some G. Finally, since G{a.0/X }⊥, X must be weakly guarded in G by Lemma 4. �
Lemma 23. Let �(E) ∪ �(F) ⊆ {X } and E �� F. Furthermore, let

R = {〈G{recX.E/X },G{recX.F/X }〉 | �(G) ⊆ {X }}.
Then S = (R ∪R−1) is an observational congruence up to ≈� .

Proof. Let us first check condition ( ). By symmetry it suffices to consider a pair
〈G{recX.E/X },G{recX.F/X }〉. We proceed by an induction on the height of the derivation tree for
the transition G{recX.E/X } a−→ P .

G ≡ 0 or G ≡ a.H for some a ∈ � : trivial
G ≡ X : Assume that recX.E

a−→ P . Thus, E{recX.E/X } a−→ P , which can be derived by a smaller
derivation tree. Thus, the induction hypothesis implies E{recX.F/X } a�⇒ Q′ and P S R ≈� Q′ for
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some R,Q′. Since E �� F , we have E{recX.F/X } �� F {recX.F/X }. This implies F {recX.F/X } a�⇒ Q

and Q′ ≈� Q for some Q and thus finally recX.F a�⇒ Q and P S R ≈� Q′ ≈� Q.
G ≡ 	(H): Assume that 	(H {recX.E/X }) a−→ P . The case a = � and P ≡ 	(H {recX.E/X }) is

trivial. On the other hand, if H {recX.E/X } a−→ P , then by induction H {recX.F/X } a�⇒ Q for some
Q ∈ � with P S R ≈� Q. Thus also 	(H {recX.F/X }) a−→ Q.

G ≡ H1 + H2: Assume thatH1{recX.E/X } + H2{recX.E/X } a−→ P . W.l.o.g. we haveH1{recX.E/X }
a−→ P . By induction H1{recX.F/X } a�⇒ Q for some Q ∈ � with P S R ≈� Q. Thus, H1{recX.F/X } +

H2{recX.F/X } a�⇒ Q.
G ≡ recY.H : If X = Y , then G{recX.E/X } ≡ G ≡ G{recX.F/X }. Thus, assume that X /= Y . Since

recX.E, recX.F ∈ � , it follows

(recY.H){recX.E/X } ≡ recY.H {recX.E/X } and
(recY.H){recX.F/X } ≡ recY.H {recX.F/X }.

Assume that recY.H {recX.E/X } a−→ P . Hence

(H {recX.E/X }){recY.H {recX.E/X }/Y } ≡
(H {recY.H/Y }){recX.E/X } a−→ P

by a smaller derivation tree. By induction (H {recY.H/Y }){recX.F/X } a�⇒ Q for some Q ∈ � with
P S R ≈� Q, which implies recY.H {recX.F/X } a�⇒ Q.

It remains to show that S preserves �. Since we already know that S satisfies ( ), it suffices to
show that G{recX.E/X }� implies G{recX.F/X } �⇒ Q� for some Q. For � = � and � = ⊥ this is
trivial due to ( ).

Let � =⇑ andG{recX.E/X } ⇑. We have to show that alsoG{recX.F/X } ⇑. First consider the case
G ≡ X , i.e., let recX.E ⇑. By Lemma 7 either E ⇑ or E ��⇒ E′ for some E′ such that X is totally
unguarded in E′. If E ⇑ then E �⇑ F and Lemma 22(2) imply F ⇑, thus also recX.F ⇑ by Lemma
7. Similarly, if E ��⇒ E′, where X is totally unguarded in E′, then E �⇑ F and Lemma 22(1) imply
F

��⇒ F ′ for some F ′ such that X is totally unguarded in F ′. Thus recX.F ⇑ by Lemma 7.
Now assume that G is arbitrary and that G{recX.E/X } ⇑. By Lemma 5 either G ⇑ or (G �⇒ H ,

X is totally unguarded in H , and recX.E ⇑). If G ⇑ then also G{recX.F/X } ⇑. Thus, assume that
G �⇒ H , X is totally unguarded in H , and recX.E ⇑. Since recX.E ⇑, from the previous paragraph
we obtain recX.F ⇑. Finally G �⇒ H and X totally unguarded in H imply G{recX.F/X } ⇑ by
Lemma 5.

Now assume that � = ⇑ and G{recX.E/X }⇑. If G{recX.E/X } �⇒ P⊥, then ( ) implies
G{recX.F/X } �⇒ Q for some Q with P S R ≈⇑ Q. Since P⊥, we also have R⊥. Hence, Q⇑. Now
assume thatG{recX.E/X } ⇑. Again we first consider the caseG ≡ X , i.e., recX.E ⇑. As for � =⇑, we
have either E ⇑ or E ��⇒ E′ for some E′ such that X is totally unguarded in E′. In the latter case
we can conclude analogously to � =⇑ that recX.F ⇑. Thus, assume that E ⇑. Then E �⇑ F and
Lemma 22(3) imply either F ⇑ or F ��⇒ F ′⊥ for some F ′ such that X is weakly guarded in F ′. If
F ⇑, then also recX.F ⇑ by Lemma 7. If F ��⇒ F ′⊥ for some F ′ such that X is weakly guarded in
F ′, then F {recX.F/X } ��⇒ F ′{recX.F/X }, i.e, recX.F ��⇒ F ′{recX.F/X }, by Lemma 1. Furthermore,
since F ′⊥ and X is weakly guarded in F ′, we have F ′{recX.F/X }⊥ by Lemma 4.
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IfG is arbitrary andG{recX.E/X } ⇑, then analogously to the case � =⇑ eitherG ⇑ or (G �⇒ H ,
X is totally unguarded in H , and recX.E ⇑). If G ⇑, then also G{recX.F/X } ⇑. Thus, assume that
G �⇒ H , X is totally unguarded in H , and recX.E ⇑. From the previous paragraph we obtain
either recX.F ⇑ or recX.F

��⇒ Q⊥ for some Q. If recX.F ⇑, then G{recX.F/X } ⇑ by Lemma 5.
On the other hand, if recX.F ��⇒ Q⊥, then, since X is totally unguarded in H , G{recX.F/X } �⇒
H {recX.F/X } ��⇒ Q⊥ by Lemma 1 and Lemma 2. �

Eventually, we have all the means to derive that �� is a congruence with respect to rec.

Corollary 1. If E, F ∈ � , then E �� F implies recX.E �� recX.F.

Proof.Due to thedefinitionof�� for expressionswith free variables, it suffices to consider only those
E, F ∈ � where �(E) ∪ �(F) ⊆ {X }. Assume that E �� F holds. Then the relation S appearing in
Lemma 23 is an observational congruence up to≈�. Choosing G ≡ X implies 〈recX.E, recX.F 〉 ∈ S
and thus recX.E �� recX.F by Lemma 21. �

B. Unique solution of guarded equations

Abusing notation relative to Appendix 9, we shall for this section redefine the notion of an
observational congruence up to≈� as follows: A symmetric relationS ⊆ � × � is an observational
congruence up to ≈� if S preserves � and:

( ) if (P ,Q) ∈ S and P
a�⇒ P ′ for P , P ′,Q ∈ � , then Q

a�⇒ Q′
and P ′ ≈� R1 S R2 ≈� Q′ for some Q′,R1,R2 ∈ �

Lemma 24. If S is an observational congruence up to ≈�, then S ⊆ �� .

Proof. First we prove that ≈� ◦S◦ ≈� is a WB�, the rest of the proof is analogous to the proof
of Lemma 21. Preservation of � by ≈� ◦S◦≈� is clear. In order to show that ≈� ◦S◦≈� is a WB,
assume that P ≈� R1 S R2 ≈� Q and P

a−→ P ′. Then there exists an R′1 with R1
â�⇒ R′1 and P ′ ≈� R′1.

The case a = � and R1 ≡ R′1 is clear. Thus, let us assume that R1
a�⇒ R′1. Then ( ) implies R2

a�⇒ R′2
and R′1 ≈� ◦S◦ ≈� R′2 for some R′2. Finally R2

a�⇒ R′2 and R2 ≈� Q implies Q â�⇒ Q′ and R′2 ≈� Q′
for some Q′. �
Lemma 25. Assume that

• E ∈ � , P ,Q ∈ � ,
• X is guarded in E, �(E) ⊆ {X },
• P �� E{P/X } and Q �� E{Q/X }.

Then the symmetric relation

S = {〈G{P/X },G{Q/X }〉, 〈G{Q/X },G{P/X }〉 | �(G) ⊆ {X }}

is an observational congruence up to ≈� .



142 M. Lohrey et al. / Information and Computation 203 (2005) 115–144

Proof. The proof for the property ( ) is the same as for condition (∗) in [14, p 159].
It remains to show thatS preserves�. By symmetry it suffices to consider a pair 〈G{P/X },G{Q/X }〉

with �(G) ⊆ {X }.
First assume that � =⇑ and G{P/X } ⇑. Since G{P/X } �⇑ G{E/X }{P/X }, also G{E/X }{P/X } ⇑.

Since X is guarded in G{E/X }, Lemma 5 implies G{E/X } ⇑. Thus, G{E/X }{Q/X } ⇑ and G{Q/X } ⇑.
Now assume that � ∈ {�,⊥} and G{P/X } �⇒ P ′�. Then there exists R with G{E/X }{P/X } �⇒

R�. Since X is guarded in G{E/X }, we can trace by Lemma 1 and Lemma 3 the transition se-
quence G{E/X }{P/X } �⇒ R and obtain an H with R ≡ H {P/X }, G{E/X }{Q/X } �⇒ H {Q/X }, and
X guarded inH . SinceH {P/X }� and X is guarded inH this implies with Lemma 4H {Q/X }�. Finally
G{E/X }{Q/X } �⇒ H {Q/X }� implies G{Q/X } �⇒ Q′� for some Q′.

Finally assume that � = ⇑ and G{P/X }⇑. Thus, G{E/X }{P/X }⇑, i.e., G{E/X }{P/X } ⇑ or
G{E/X }{P/X } �⇒ R⊥. By using the arguments from the previous two paragraphs, we obtain
G{E/X }{Q/X }⇑, which finally gives us G{Q/X }⇑. �
Theorem 12. Assume that

• E ∈ � , P ,Q ∈ � ,
• X is guarded in E, �(E) ⊆ {X },
• P �� E{P/X }, and Q �� E{Q/X }.

Then P �� Q.

Proof.We obtain the conclusion by choosing G ≡ X in the relation S defined in Lemma 25. �

Theorem 13. Assume that

• E ∈ � , P ∈ � ,
• X is guarded in E, �(E) ⊆ {X }, and
• P �� E{P/X }.

Then P �� recX.E.

Proof.We have recX.E �� E{recX.E/X }, thus we can apply Theorem 12 with Q ≡ recX.E. �
Using the definition of �� for expressions with free variables, Theorem 12 and Theorem 13 hold

for arbitrary expressions from � .

C. Soundness of (rec5) and (rec6)

For (rec5) we have to prove that

P ≡ recX.(�.(X + E)+ F) �⇑ recX.(	(E + F)) ≡ Q,

where w.l.o.g. �(E) ∪ �(F) ⊆ {X }. Define the following relations:

R0 = {〈G{P/X },G{Q/X }〉 | �(G) ⊆ {X }}
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R1 = {〈P + E{P/X }, 	(E{Q/X } + F {Q/X })〉}
R = R0 ∪R−1

0 ∪R1 ∪R−1
1

Thus,R is symmetric.Wewill show that (R1,R2) ∈ R andR1
a−→ R′1 impliesR2

a�⇒ R′2 and (R
′
1,R

′
2) ∈

R for some R′2. This implies also that R preserves ⇑ and that R is a WB⇑, i.e., R ⊆ ≈�. Hence, also
the root conditions are satisfied for all pairs in R, thus R ⊆ �⇑. If we choose G ≡ X in R0 this
implies P �⇑ Q.

In order to prove that (R1,R2) ∈ R and R1
a−→ R′1 imply R2

a�⇒ R′2 and (R′1,R
′
2) ∈ R for some

R′2, we first consider the case (R1,R2) ∈ R0 ∪R−1
0 . We treat this case by induction on the size of the

derivation tree for the transition R1
a−→ R′1 using a case distinction on the expressionG inR0. Most

cases are straight-forward, we only consider the two cases resulting from G ≡ X :
Case 1. R1 ≡ P

a−→ R′1 and R2 ≡ Q: Thus recX.(�.(X + E)+ F)
a−→ R′1, i.e, �.(P + E{P/X })+

F {P/X } a−→ R′1 by a smaller derivation tree. There are two cases:
Case 1.1. a = � and R′1 ≡ P + E{P/X }: We have

Q ≡ recX.(	(E + F))
�−→ 	(E{Q/X } + F {Q/X })

and 〈P + E{P/X }, 	(E{Q/X } + F {Q/X })〉 ∈ R.
Case 1.2. F {P/X } a−→ R′1. By induction we obtain F {Q/X } a�⇒ R′2 and (R′1,R

′
2) ∈ R for some R′2.

Thus, Q
�−→ 	(E{Q/X } + F {Q/X }) a�⇒ R′2.

Case 2.R1 ≡ Q
a−→ R′1 andR2 ≡ P : Thus recX.(	(E + F))

a−→ R′1, i.e,	(E{Q/X } + F {Q/X }) a−→
R′1 by a smaller derivation tree. There are three cases:

Case 2.1. a = � and R′1 ≡ 	(E{Q/X } + F {Q/X }). Then P
�−→ P + E{P/X } and 〈	(E{Q/X } +

F {Q/X }), P + E{P/X }〉 ∈ R.
Case 2.2. E{Q/X } a−→ R′1. By induction we obtain E{P/X } a�⇒ R′2 and (R′1,R

′
2) ∈ R for some R′2.

Thus, P
�−→ P + E{P/X } a�⇒ R′2.

Case 2.2. F {Q/X } a−→ R′1. By induction we obtain F {P/X } a�⇒ R′2 and (R′1,R
′
2) ∈ R for some R′2.

Thus, also P
a�⇒ R′2. This concludes the consideration of the case (R1,R2) ∈ R0 ∪R−1

0 .
It remains to consider the case (R1,R2) ∈ R1 ∪R−1

1 . For thiswewillmake use of the case (R1,R2) ∈
R0 ∪R−1

0 . There are two cases:
Case 1. R1 ≡ P + E{P/X } and R2 ≡ 	(E{Q/X } + F {Q/X }). Thus, we have P + E{P/X } a−→ R′1,

and we can distinguish the following two cases:
Case 1.1. P

a−→ R′1. Since 〈P ,Q〉 ∈ R0, we have Q
a�⇒ R′2 and (R′1,R

′
2) ∈ R for some R′2. Thus,

	(E{Q/X } + F {Q/X }) a�⇒ R′2.
Case 1.2. E{P/X } a−→ R′1. Since 〈E{P/X },E{Q/X }〉 ∈ R0, we obtain E{Q/X } a�⇒ R′2 and thus

	(E{Q/X } + F {Q/X }) a�⇒ R′2 for some R′2 with (R′1,R
′
2) ∈ R.

Case 2. R1 ≡ 	(E{Q/X } + F {Q/X }) and R2 ≡ P + E{P/X }. We can distinguish the following
three cases:

Case2.1.a=� andR′1≡	(E{Q/X } + F {Q/X }). SinceP �−→ P+E{P/X },wehaveP + E{P/X } �−→
P + E{P/X }.
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Case 2.2.E{Q/X } a−→ R′1. Since 〈E{Q/X },E{P/X }〉 ∈ R0, we obtainE{P/X } a�⇒ R′2 and (R
′
1,R

′
2) ∈

R for some R′2. Thus, P + E{P/X } a�⇒ R′2.
Case2.3.F {Q/X } a−→ R′1. Since 〈F {Q/X }, F {P/X }〉 ∈ R0,weobtainF {P/X } a�⇒ R′2 and (R

′
1,R

′
2) ∈

R for some R′2. Thus, P
a�⇒ R′2 and hence P + E{P/X } a�⇒ R′2. This concludes the correctness proof

of (rec5).
For (rec6) we have to prove that

P ≡ recX.(	(X + E)+ F) �⇑ recX.(	(E + F)) ≡ Q,

where �(E) ∪ �(F) ⊆ {X }. We proceed analogously to (rec5). Define

R0 = {〈G{P/X },G{Q/X }〉 | �(G) ⊆ {X }},
R1 = {〈	(P + E{P/X }), 	(E{Q/X } + F {Q/X })〉}, and
R = R0 ∪R−1

0 ∪R1 ∪R−1
1 .

Then it can be shown that (R1,R2) ∈ R and R1
a−→ R′1 imply R2

a�⇒ R′2 and (R′1,R
′
2) ∈ R for some

R′2. The proof of this is analogous to those for (rec5) and left to the reader.
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