
Distributed Analysis for Diagnosability
in Concurrent Systems ∗

Hernán Ponce de León1 and Gonzalo Bonigo2 and Laura Brandán Briones2,3
1INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France

2Fa.M.A.F. - Universidad Nacional de Córdoba, Argentina
3CONICET

e-mail: ponce@lsv.ens-cachan.fr, bonigo@famaf.unc.edu.ar, lbrandan@famaf.unc.edu.ar

Abstract
Complex systems often exhibit unexpected faults
that are difficult to handle. Such systems are de-
sirable to be diagnosable, i.e. faults can be auto-
matically detected as they occur (or shortly after-
wards), enabling the system to handle the fault or
recover. A system is diagnosable if it is possible
to detect every fault, in a finite time after they oc-
curred, by only observing the available informa-
tion from the system. Complex systems are usu-
ally built from simpler components running con-
currently. We study how to infer the diagnosabil-
ity property of a complex system (distributed and
with multiple faults) from a parallelized analysis
of the diagnosability of each of its components
synchronizing with fault free versions of the oth-
ers. In this paper we make the following contribu-
tions: (1) we address the diagnosability problem
of concurrent systems with arbitrary faults occur-
ring freely in each component. (2) We distribute
the diagnosability analysis and illustrate our ap-
proach with examples. Moreover, (3) we present
a prototype tool that implements our techniques
showing promising results.

1 Introduction
As systems become larger, their behavior becomes more
complex. Several things may go wrong, resulting in faults
occurring. It is then crucially important to design our sys-
tems in a way that we can detect or recover from such faults
when they occur. A system is diagnosable when its design
allows the detection of faults, for instance a system that has
sensors specially dedicated to detect them. Sometimes the
detection of faults is more involved and the diagnosability
property is harder to establish, specially in systems with sev-
eral components.

A sound software engineering rule for building complex
systems is to divide the whole system in smaller and simpler
components, each solving a specific task. Moreover, usually
they are built by different groups of people and may be in
different places. This means that, in general, complex sys-
tems are actually collections of simpler components running
in parallel.

∗This work has been supported by the European Union Sh
Framework Programme under grant agreement no. 295261
(MEALS).

In order to model such systems and formally prove re-
sults, there are several formalisms like Finite State Ma-
chines (FSMs) [Sampath et al., 1995; Jiang et al., 2000],
Petri Nets [Genc and Lafortune, 2003; Madalinski et al.,
2010] and Labeled Transition Systems (LTSs) [Brandán-
Briones et al., 2008; Brandán-Briones and Madalinski,
2011; Bonigo and Brandán-Briones, 2012]. In this paper,
we model each component by a LTS, so the whole system
is a collection of LTSs synchronizing in all their shared ob-
servable actions (see Section 2).

In the diagnosability analysis of distributed systems it is
usually assumed that a fault can occur in exactly one of the
different components. We relax this assumption allowing
the same fault to occur in several components.

Also, the diagnosability analysis is usually iterative (i.e.,
sequential): the information from local diagnosers is com-
bined until a global verdict is reached. We propose a method
to distribute this analysis.

Finally, we developed a tool that implements all our re-
search. The DADDY tool (Distributed Analysis for Dis-
tributed Discrete sYstems) [Bonigo, 2012] is a prototype
based on the results presented in [Bonigo and Brandán-
Briones, 2012] and this paper. The tool does not only im-
plement the method we presents but also the classic one al-
lowing us to compare both approaches. We present a com-
parative analysis of their performance obtained from the ex-
perimental running of several examples.

Related Work Diagnosability was initially developed
in [Sampath et al., 1995] under the setting of discrete event
systems. In that paper, necessary and sufficient conditions
for testing diagnosability are given. In order to test diagnos-
ability, a special diagnoser is computed, whose complexity
of construction is shown to be exponential in the number of
states of the original system, and double exponential in the
number of faults. Later, in [Jiang et al., 2000], an improve-
ment of this algorithm is presented, where the so-called twin
plant method is introduced and shown to have polynomial
complexity in the number of states and faults. Afterwards,
in [Schumann and Pencolé, 2007], an improvement to the
twin plant method is presented where the system is reduced
before building the twin plant.

None of the methods presented there (i.e., [Sampath et
al., 1995; Jiang et al., 2000]) consider the problem when the
system is composed of components working in parallel. An
approach to this consideration is addressed in [Schumann
and Pencolé, 2007; Debouk et al., 2000; Pencolé, 2004;
Schumann and Huang, 2008] where the diagnosability prob-



lem is performed by either local diagnosers or twin plants
communicating with each other, directly or through a co-
ordinator, and by that means pooling together the observa-
tions. [Ye and Dague, 2012] shows that when considering
only local observations, diagnosability becomes undecid-
able when the communication between component is unob-
servable. An algorithm is proposed to check a sufficient but
not necessary condition of diagnosability. However, their
results are based in the assumption that a fault can only oc-
cur in one of the components, an assumption that can not
always be made.

Several mechanisms such as interleaving, shared vari-
ables and handshaking have been described in [Baier and
Katoen, 2008] to provide operational models for distributed
systems. In the handshaking method, the communication is
made by the synchronization on actions or events. These
actions must be specified a priori in the model, so the dif-
ferent components can be synchronized at execution time.
In [Bonigo and Brandán-Briones, 2012] the authors study
how different kinds of synchronizations (via all the shared
actions, some of them or none) impact in the diagnosis anal-
ysis.

Motivation Suppose different groups of people are com-
manded to build different components of a system. Even
if each component is diagnosable, it is not always the case
that the resulting system has such property1. In [Bonigo and
Brandán-Briones, 2012] the authors show that with different
kinds of synchronizations, the diagnosability of the global
system can not be inferred directly from the diagnosability
of each component.

We propose a framework where each component only
shares with the rest a fault free version of its own, maybe the
specification of its ideal behavior. Then, each component
should not only be diagnosable, but also its interaction with
the fault free version of the others, i.e. its synchronous prod-
uct with fault free version of the other components. There-
fore, our diagnosability analysis can be distributed.

Paper organization Section 2 presents the formal model
that we use for modeling each component, the parallel com-
position between them and the notion of diagnosability. In
Section 3, we develop our analysis method, showing how
the diagnosability of each component synchronizing with
fault free versions of the other components influences the
diagnosability property of the overall system. Section 4
presents our tool DADDY and some experimental results.
We conclude and discuss about future work in Section 5.

2 Diagnosability Analysis
2.1 Model of the system
We consider a distributed system composed of two au-
tonomous components G1, G2 that communicate with each
other by all their shared observable actions. The local model
of a component is defined as a Labeled Transition System.

Definition 1. A Labeled Transition System (LTS) is a tuple
G = (Q,Σ, δ, q0) where

• Q is a finite set of states,

• Σ is a finite set of actions,

1See for example C,D and C ×D in Figures 1 and 2.

• δ is a partial transition function, and

• q0 the initial state, with q0 ∈ Q.

As usual in diagnosability analysis, some of the actions of
Σ are observable while the rest are unobservable. Thus the
set of actions Σ is partitioned as Σ = Σo ] Σuo where Σo

represents the observable actions and Σuo the unobservable
ones.

The faults to diagnose are considered unobservable, i.e.
ΣF ⊆ Σuo, as faults that are observable can be easily diag-
nosable.

As usual in diagnosability analysis, we made the follow-
ing assumptions about our systems.

Assumption 1. We only consider (live) systems where there
is a transition defined at each state, i.e. the system cannot
reach a point at which no action is possible.

Assumption 2. The system does not contain cycles of un-
observable actions.

Note that, these assumptions together assure that all our
systems are free of observation starvation.

f f

o2

o3

o3

o3

A

f

o1

u1

o2

o1

o3

B

o1 o2

o3

f

o3

u2

o4

C

o2o1

o3

f

o3

u3

o5

D

Figure 1: Specification of four components modeled by
LTSs

Figure 1 shows four components modeled by the
LTSs A,B,C and D where o1, o2, o3, o4, o5 ∈ Σo and
u1, u2, u3 ∈ Σuo. The special action f ∈ ΣF is the fault
to be diagnosable.

A path from state qi to state qj in G is a sequence qi · ai ·
qi+1 . . . aj−1 · qj such that (qk, ak, qk+1) ∈ δ for i ≤ k ≤
j − 1. The set of paths in G is denoted by paths(G).

The trace associated with any given path consists of its
sequence of actions (i.e., for a path ρ = q0 ·a0 · q1 . . . an−1 ·
qn we have trace(ρ) = a0 · a1 . . . an). Given a trace, σ =
a0 · a1 . . . an, we denote as f ∈ σ when there exists i such
that f = ai. As our systems are live, we only consider
infinity traces where the infinite repetition of an actions a is
denoted by â. The set of all traces starting in q0 is denoted
by traces(G). As we consider nondeterministic systems, the
same trace can belong to several paths. The set of possible
paths of a trace σ in G are: path(σ) = {ρ ∈ paths(G) |
trace(ρ) = σ}.

The observation of a trace is given by the following defi-
nition.



Definition 2. Let σ ∈ Σ∗, then

obs(σ) =

{
ε if σ = ε
a·obs(σ′) if σ = a·σ′ ∧ a∈Σo

obs(σ′) if σ = a·σ′ ∧ a 6∈Σo

The communication between two components is given by
their synchronous product where the synchronizing actions
are all the shared observable ones.
Definition 3. Given two local components G1 =
(Q1,Σ1, δ1, q10) and G2 = (Q2,Σ2, δ2, q20), the behavior
of the global system is given by their synchronous product
G1×G2 = (Q1×Q2,Σ1 ∪Σ2, δ1×2, (q10 , q

2
0)) where δ1×2

is defined as follows

δ1×2((q1i , q
2
j ), a) =


(δ1(q1i,a), δ2(q2j,a)) if a∈Σ1

o ∩ Σ2
o

(δ1(q1i , a), q2j ) if a∈Σ1 ∧ a 6∈Σ2

(q1i , δ
2(q2j , a)) if a∈Σ2 ∧ a 6∈Σ1

Given a path in the global system, we can project it to a
single component.
Definition 4. Let ρ∈paths(G1×G2), its projection in Gi is

Pi((q
1, q2)) = qi

Pi((q
1, q2)·a·ρ′) =

{
qi ·a·Pi(ρ

′) if ∃ δi(qi, a)
Pi(ρ

′) otherwise

For a trace in the global system, we define the projections
to know which actions belong to a certain component.
Definition 5. Let σ be a trace in traces(G1 ×G2), σ′ is its
projection in Gi, denoted Pi(σ) = σ′, iff

∃ ρ∈path(σ) : trace(Pi(ρ))=σ′

Example 1. Let σ = o1fo3u3ô5 be a trace in traces(C×D)
from Figure 2, its projection in component C is given by
PC(σ) = o1fo3 and its projection in component D is given
by PD(σ) = o1o3u3ô5. These projections are traces of the
corresponding components C and D from Figure 1. Note
that projections of an infinite trace from the global system
can be finite in one of the components.

f
f f

u1

f f u1 f

f u1f f
o2

o1

o1 o3

o1

o1 o3
A×B

o1

f u3

u3 f

o2

u2 f

f u2

o3 o5

o5

o4 o3

o4

C ×D

Figure 2: Synchronous product of components A,B and
C,D

As the projection operator only erases actions in a trace,
it is easy to see that every fault belonging to a projection of
such a trace, also belongs to the trace in the global system
as it is shown by the following result.
Proposition 1. For every trace σ in traces(G1 × G2) with
Pi(σ) = σi, we have

if f ∈ σi then f ∈ σ
When two components synchronize in all their shared ac-

tions, if two traces of the global system have the same ob-
servability and we project them to the same component, the
resulting projections will also have the same observability.
This result is captured by Proposition 2.

Proposition 2. Given two traces σ and α in traces(G1 ×
G2) with Pi(σ) = σi and Pi(α) = αi, we have

if obs(σ) = obs(α) then obs(σi) = obs(αi)

This result is proved by double induction in the structure
of σ and α. We analyze several cases depending on the ex-
istence of the projections. One of the most critical cases is
when σ = a·σ′, α = b·α′, a ∈ Σ1

o ∩ Σ2
o, but b 6∈ Σ1

o ∩ Σ2
o

as it has several particular sub-cases. Note that this result
only holds when the synchronization is done in all the set of
shared actions.

2.2 Diagnosability condition
We present now the notion of diagnosability. Informally, a
fault f ∈ ΣF is diagnosable if it is possible to detect, within
a finite delay, occurrences of such a fault using the record of
observed actions. In other words, a fault is not diagnosable
if there exist two infinite paths from the initial state with the
same infinite sequence of observable actions but only one of
them contains a fault.

Definition 6. Let f be a fault in ΣF , f is diagnosable in G
iff

∀σ, α ∈ traces(G) : if obs(σ) = obs(α)

and f ∈ σ then f ∈ α
The system G is diagnosable, denoted by diag(G), if and

only if every fault f ∈ ΣF is diagnosable.

The previous definition introduced in [Brandán-Briones
et al., 2008] is a reformulation of the one presented in [Sam-
path et al., 1995].

Example 2. Let consider the components A and B from
Figure 1. The only pair of traces in A with the same ob-
servability are of the form fô3 (one for each branch from
the initial state), as both traces contain the fault f , system
A is diagnosable. In the case of B, each observable trace
corresponds to a unique path, therefore B is diagnosable.

Now, consider system A × B from Figure 2, we can see
that every trace contains a fault, therefore A × B is diag-
nosable. On the contrary, in system C × D we have two
traces, o2u2ô4 and o2fu2ô4 that have the same observabil-
ity, but one of them contains a fault and the other does not,
therefore the system C ×D is not diagnosable.

3 Distributing the diagnosability analysis
The notion of diagnosability is introduced in [Sampath et
al., 1995] assuming a centralized architecture of the system.
In order to check the diagnosability property in distributed
systems, the synchronous product of components is com-
puted and such a product is given as an input to an algo-
rithm that tests its diagnosability (usually based on the twin
plant method). The size of such a product grows exponen-
tially with respect of the size of the components, resulting
in an inefficient algorithm. When dealing with real appli-
cations, such as telecommunication networks or power dis-
tribution networks, the centralized approach is clearly unre-
alistic because of the size of those applications. Moreover,
this approach does not exploit the fact that such systems are
distributed.

In [Schumann and Pencolé, 2007; Pencolé, 2004] the au-
thors distribute the search for non-distinguishable behaviors
based on local verifiers and local twin plants. The local in-
formation is propagated until a verdict is made or, in the



worst case, the global system is built. Their result is based
on the assumption that a fault can occur in exactly one com-
ponent.

In this section we present a method that allows to de-
cide the diagnosability of a distributed system in terms of
the diagnosability of each faulty component synchronizing
with fault free versions of the remaining ones. Basically,
we compose each component with a fault free version of the
other components and analyze their diagnosability in paral-
lel. To the best of our knowledge, it is the first method that
allows to parallelize the diagnosability analysis.

Algorithm 1
Require: A LTS G = (Q,Σ, δ, q0)
Ensure: An f -fault free version of G

1: Q′ := {q0} , δ′ := ∅ , Q := Q \ {q0}
2: while ∃(q′,x,q) :q′∈Q′∧ (q′,x,q)∈δ ∧ (q′,x,q) 6∈δ′ do
3: if x 6= f then
4: Q′ := Q′ ∪ {q}
5: δ′ := δ′ ∪ (q′, x, q)
6: end if
7: δ := δ \ (q′, x, q)
8: end while
9: return Gf = (Q′,Σ, δ′, q0)

For testing the diagnosability of a fault f ∈ ΣF in the
global system, instead of computing the whole composition,
we consider one component and compose it with the fault
free versions of the others. These fault free versions may
be taken as the specification of each component, when pro-
vided, or can be computed by removing the fault f in the
component using Algorithm 1 and considering such as the
correct behavior of the system.

Af

u1

o3

Bf

o1 o2
o3

u2

o4
Cf

o2o1
o3

u3

o5
Df

Figure 3: Components A,B,C and D after removing their
faults

If we compose a componentGi with the fault free version
ofGj , meaningGf

j , clearly the traces of the resulting system
are those of Gi×Gj such that its projections in Gj are fault
free.
Proposition 3. Let Gi and Gj be two LTSs, then σ ∈
traces(Gi×Gf

j ) iff

σ ∈ traces(Gi ×Gj) ∧ ∀σj : Pj(σ) = σj ⇒ f 6∈ σj

Figure 3 shows components A,B,C and D after remov-
ing fault f and Figure 4 shows them synchronizing with the
faulty components.
Example 3. Let us consider the systems from Figure 4. Sys-
tem Af × B is trivially diagnosable. In the case of system
A × Bf , it is easy to see that the observable traces are of
the form ô3, but all traces containing o3 also contain f and

f

o1

Af ×B

u1
f f

u1 f
u1f

o3 o3
A×Bf

o2

u2 f

f u2

o1

u3
o4 o3

o4

o5

Cf ×D

o2

u2

o1

f

u3

u3

f o4
o3 o5

o5

C ×Df

Figure 4: Composed systems after removing the faults in
one of the components

therefore A × Bf is also diagnosable. In system Cf × D,
traces σ = o2u2ô4 and α = o2fu2ô4 have the same ob-
servability, but α contains a fault and σ does not. So, we
can conclude that Cf ×D is not diagnosable.

The following result states necessary conditions for the
diagnosability of the global system, i.e. the non diagnosabil-
ity of Gf

1 × G2 or G1 × Gf
2 implies the non diagnosability

of G1 ×G2.

Theorem 1. Let G1 and G2 be two LTSs, then

diag(G1 ×G2) ⇒ diag(Gf
1 ×G2) ∧ diag(G1 ×Gf

2 )

Proof. Lets assume that ¬diag(Gf
1 × G2), then there ex-

ist two traces σ, α ∈ traces(Gf
1 × G2) and f such that

obs(σ) = obs(α) with f ∈ σ, but f 6∈ α. We know
from Proposition 3 that every trace in Gf

1 × G2 is a trace
in G1 ×G2, so we have found two traces of the global sys-
tem with the same observability, one containing a fault and
the other one not. Therefore (G1×G2) is non-diagnosable.
An analogous analysis can be made if ¬diag(G1×Gf

2 ).

Example 4. We see in Example 3 that Cf ×D is non diag-
nosable. Using Theorem 1 we can conclude that C × D is
non diagnosable. This result is consistent with the diagnos-
ability analysis made in Example 2.

As explained above, the idea is to build a diagnosable
component and to test that its interaction with another fault
free component is also diagnosable. We can then decide the



diagnosability of G1 × G2 in term of the diagnosability of
G1, G2, G

f
1 ×G2 and G1 ×Gf

2 .

Theorem 2. Let G1 and G2 be two LTSs, then

diag(G1) ∧ diag(G1 ×Gf
2 )

diag(G2) ∧ diag(Gf
1 ×G2)

⇒ diag(G1 ×G2)

Proof. Let assume that we have a fault f ∈ ΣF and two
traces σ, α ∈ traces(G1 × G2) with f ∈ σ and obs(σ) =
obs(α), we need to prove that f ∈ α. Consider the follow-
ing cases:

1. if σ, α ∈ traces(Gf
i × Gj) we can prove by (Gf

i ×
Gj)’s diagnosability that f ∈ α and then G1 × G2 is
diagnosable,

2. if α 6∈ traces(Gf
i ×Gj), using the hypothesis that α ∈

traces(Gi×Gj), we can apply Proposition 3 and obtain
that ∃αi : Pi(α) = αi ∧ f ∈ αi. By Proposition 1
we know that every fault belonging to a projection also
belongs to the trace in the global system, then f ∈ α
and G1 ×G2 is diagnosable,

3. if α ∈ traces(Gf
i × Gj) and σ 6∈ traces(Gf

i × Gj)
we know by Proposition 3 that ∀αi : Pi(α) = αi and
f 6∈ αi and also that ∃σi : Pi(σ) = σi with f ∈ σi. As
obs(σ) = obs(α) we have that obs(σi) = obs(αi) by
Proposition 2. Finally asGi is diagnosable and f ∈ σi,
the fault should belong to αi, leading to a contradic-
tion. We can conclude that G1 ×G2 is diagnosable.

Example 5. From Example 2 and Example 3 we know that
A,B,Af×B andA×Bf are diagnosable. If we apply The-
orem 2 we can conclude that A × B is diagnosable, which
is consistent with the analysis made in Example 2.

3.1 Generalization
Until now we only consider systems composed by only two
components. However, real examples are usually more com-
plex and are composed of several components. Therefore
we need to generalize the previous results to global systems
composed of n different components running in parallel.

In order to generalize all our results, the associativity and
commutativity property of synchronous product become es-
sential. Note that in a general case the set of synchronizing
actions is not necessarily the intersection of all their observ-
able actions. Suppose that a system is composed by three
components, G1, G2 and G3, where two of them synchro-
nize via an action a that does not belong to a third compo-
nent, i.e. a ∈ Σ1

o ∩ Σ2
o, but a 6∈ Σ3

o. We expect that G1 and
G2 still synchronize in a. Fortunately, despite its apparent
complications, the synchronous product is associative and
commutative. The proof of such result can be found in pre-
vious work [Bonigo and Brandán-Briones, 2012].

The following results generalized Theorems 1 and 2 re-
spectively, giving necessary and sufficient conditions for the
diagnosability of the global system.

Theorem 3. LetG1, G2, . . . , Gn be n components modeled
by LTSs, then

diag(G1 ×G2 × · · · ×Gn)

⇓︷ ︸︸ ︷
diag(G1 ×Gf

2 × · · · ×Gf
n) ∧

diag(Gf
1 ×G2 × · · · ×Gf

n) ∧
...

diag(Gf
1 ×G

f
2 × · · · ×Gn)

Theorem 4. LetG1, G2, . . . , Gn be n components modeled
by LTSs, then

diag(G1) ∧ diag(G1 ×Gf
2 × · · · ×Gf

n) ∧
diag(G2) ∧ diag(Gf

1 ×G2 × · · · ×Gf
n) ∧

...

diag(Gn) ∧ diag(Gf
1 ×G

f
2 × · · · ×Gn)︸ ︷︷ ︸

⇓
diag(G1 ×G2 × · · · ×Gn)

Their proofs can be inferred directly from results that can
be found in [Bonigo and Brandán-Briones, 2012].

When the faults can occur in every component and Gf
1 ×

Gf
2 × · · · × Gn 6= G1 × G2 × · · · × Gn, our approach

shows important advantages, however in the cases where
Gf

1×G
f
2×· · ·×Gn = G1×G2×· · ·×Gn, the whole product

is analyzed and the computation time of our method is equal
to the classic one. Nevertheless, when a diagnosability anal-
ysis is performed it is because it is known that several faults
can occur in different components and it is more likely that
Gf

1 ×G
f
2 × · · · ×Gn is smaller than G1 ×G2 × · · · ×Gn.

Moreover, the diagnosability analysis of each component
and Gf

1 ×G
f
2 × · · · ×Gn can be tested in parallel, allowing

parallel analysis of diagnosability.

4 The DADDY tool
In the previous section we try to minimize the informa-
tion that components needs to share to be able to decide
the diagnosability property of the whole system. We now
present our tool, called DADDY (from Distributed Analy-
sis for distributed Discrete sYstems). DADDY implements
the method presented above and the classic one (where the
synchronous product is computed before the diagnosability
analysis is performed). The tool is written in Python and
has GNU GPL v3 license. It uses a standard format (.aut)
for the description of each component and it also allows to
see a graphical representation of the system. It can be down-
loaded from [Bonigo, 2012].

The tool receives as inputs the components of the system.
These inputs are assumed to be diagnosable, if not, an alert
message is returned. If the specifications, meaning the non
faulty components, are not given, systems Gf

j , for j 6= i,
are computed following Algorithm 1. HenceGf

j is synchro-
nized with Gi, and its diagnosability is checked using the
twin plant method from [Jiang et al., 2000]. Also, time ti of
such computation is registered.

As soon as it is known that a component interacting with
fault free versions of the other ones is non diagnosable, ap-
plying Theorem 3, a non diagnosable verdict is returned.
Moreover, using the fact that it is a distributed computation,



System Diagnosable Our method Classic method
0.0027251243 0.024051904
0.0028400421 0.023932933

A×B yes 0.0028848648 0.024003028
0.0029160976 0.025793075
0.0032229423 0.023809194
0.0041198730 0.015272855
0.0040440559 0.015629053

C ×D no 0.0042178630 0.015436887
0.0040760040 0.009753942
0.0047080516 0.015598058

Figure 5: Diagnosis results in seconds unit

when we find a non diagnosable component, the computa-
tion of all others components can be stopped. So, the result-
ing time of such computation is min(ti) with 1 ≤ i ≤ n.

On the other hand, if every component interacting with
the fault free version of the other ones is diagnosable, using
the assumption that every Gi is diagnosable by its own, we
can conclude that G1 × · · · × Gn is diagnosable applying
Theorem 4. In this case, the diagnosability of every com-
ponent is computed (in parallel) and the required time is
max(ti) with 1 ≤ i ≤ n.

We can see in table from Figure 5 that the diagnosabil-
ity analysis results obtained by DADDY are consistent with
the ones presented in our previous examples. We can also
see that our method can be almost ten times faster than
the classical one. If we consider systems n1, n2, n3 from
exaples/sample5 in [Bonigo, 2012], a non diagnosable re-
sult is obtained (as nf1 × n2 × nf3 is not diagnosable) in
0.16974902153 seconds with our method while the classi-
cal one does not reach a result after more than 24 hours.
This shows an important improvement with respect to the
classical method when the number of components grows.

5 Conclusions and Future Work
We have presented a new framework for the distributed di-
agnosability analysis of concurrent systems. We remove the
assumption that a fault can only occur in a single component
(which is usually made in distributed systems) and allow to
analyze more general systems. The method presented in this
paper parallelized the analysis leading, in general, to an im-
portant reduction in the computing time. The theoretical
results are illustrated by several examples and supported by
experimental results obtained with the DADDY tool.

We plan to continue trying to keep reducing the system
in order to obtain minimal components from which we can
infer the diagnosability of the original global system. In
addition, we intend to relax the assumption that the commu-
nicating (synchronizing) events are observable.

Furthermore, even if the framework presented in this
paper allows the distribution of the analysis, the formalism
to model the systems is still sequential (product of LTSs)
and can suffer of state space explosion making the twin
plant method to check its diagnosability still prohibitive.
We are working to extend such analysis to concurrent
models such as Petri Nets.

References
[Baier and Katoen, 2008] C. Baier and J-P. Katoen. Princi-

ples of model checking. MIT Press, 2008.

[Bonigo and Brandán-Briones, 2012] G. Bonigo and
L. Brandán-Briones. Trabajo Final para la Licen-
ciatura en Ciencias de la Computación: Análisis
de Diagnosticabilidad en Sistemas Distribuidos.
http://www.famaf.unc.edu.ar/institucional/biblioteca/
trabajos/638/16627.pdf, 2012.

[Bonigo, 2012] G. Bonigo. Daddy. https://code.
google.com/p/daddy/, 2012.

[Brandán-Briones and Madalinski, 2011] L. Brandán-
Briones and A. Madalinski. Bounded predictability for
faulty discrete event systems. In SCCC, pages 815–830,
2011.

[Brandán-Briones et al., 2008] L. Brandán-Briones, A. La-
zovik, and P. Dague. Optimizing the system observability
level for diagnosability. In ISoLA, pages 815–830, 2008.

[Debouk et al., 2000] R. Debouk, S. Lafortune, and
D. Teneketzis. Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete
Event Dynamic Systems, 10(1-2):33–86, 2000.

[Genc and Lafortune, 2003] S. Genc and S. Lafortune. Dis-
tributed diagnosis of discrete-event systems using petri
nets. In ICATPN, pages 316–336, 2003.

[Jiang et al., 2000] S. Jiang, Z. Huang, V. Chandra, and
R. Kumar. A polynomial algorithm for testing diagnos-
ability of discrete event systems. IEEE Transactions on
Automatic Control, 46:1318–1321, 2000.

[Madalinski et al., 2010] A. Madalinski, F. Nouioua, and
P. Dague. Diagnosability verification with petri net un-
foldings. Int. J. Know.-Based Intell. Eng. Syst., 14(2):49–
55, April 2010.

[Pencolé, 2004] Y. Pencolé. Diagnosability analysis of dis-
tributed discrete event systems. In ECAI, pages 43–47,
2004.

[Sampath et al., 1995] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Diagnos-
ability of Discrete-Event Systems. IEEE Transactions on
Automatic Control, 40(9):1555–1575, September 1995.

[Schumann and Huang, 2008] A. Schumann and J. Huang.
A scalable jointree algorithm for diagnosability. In AAAI,
pages 535–540, 2008.

[Schumann and Pencolé, 2007] A. Schumann and Y. Pen-
colé. Scalable diagnosability checking of event-driven
system. In In Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI07, pages 575–580, 2007.

[Ye and Dague, 2012] L. Ye and P. Dague. Diagnosability
analysis for self-observed distributed discrete event sys-
tems. In VALID, pages 93–98, 2012.


