Available online at www.sciencedirect.com

scmnce@nlnetn'@ Information

and
Sl Computation
ELSEVIER Information and Computation 203 (2005) 1-38

www.elsevier.com/locate/ic

A theory of stochastic systems. Part I: Stochastic automata

Pedro R. D’Argenio b1, Joost-Pieter Katoen b¢*

A Universidad Nacional de Cérdoba, Ciudad Universitaria, 5000 Cérdoba, Argentina
b University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
CRWTH Aachen, Ahornstrafie 55, D-52074 Aachen, Germany

Received 28 November 2003; revised 9 February 2005
Available online 16 September 2005

Abstract

This paper presents the theoretical underpinning of a model for symbolically representing probabilistic
transition systems, an extension of labelled transition systems for the modelling of general (discrete as well
as continuous or singular) probability spaces. These transition systems are particularly suited for modelling
softly timed systems, real-time systems in which the time constraints are of random nature. For continuous
probability spaces these transition systems are infinite by nature. Stochastic automata represent their be-
haviour in a finite way. This paper presents the model of stochastic automata, their semantics in terms of
probabilistic transition systems, and studies several notions of bisimulation. Furthermore, the relationship of
stochastic automata to generalised semi-Markov processes is established.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Probabilistic bisimulation; Generalised semi-Markov processes; (continuous) Probabilistic transition
systems; Softly timed systems; Stochastic automata

1. Introduction

The design and analysis of systems, like embedded systems, communication protocols or multi-
media systems, requires insight into not only the functional, but also into the real-time and perfor-
mance aspects of applications involved. Research in concurrency theory has recognised the need for

* Corresponding author.
E-mail address: katoen@cs.rwth-aachen.de (J.-P. Katoen).
! Partially supported by the NWO visiting Grant B-61-519 and by the ANPCyT project PICT 11-11738.

0890-5401/§ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.07.001

2 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

the additional support of quantitative aspects, and various initiatives have been taken to accomplish
such support. A prominent example is the treatment of real-time constraints, where specification
formalisms like timed automata [2] have emerged, and where impressive progress has been made
in the development of efficient verification algorithms [34,4]. This has resulted in a number of tools
(model checkers) that provide interesting experimental platforms for industrial case studies [51,35].

1.1. Stochastic automata

Typical constraints considered in this real-time setting are hard— “the system must always do
a certain activity before time ¢.” For many applications, though, real-time constraints are less
stringent. Rather than requiring that an activity must always occur before time ¢, in practice one is
usually interested in soft real-time constraints, where a system is required to perform the activity
mostly before time ¢. The soft real-time requirements of systems typically have to do with their
performance characteristics, and are often also referred to as quality-of-service parameters. They
are usually related to stochastic aspects of various forms of time delay, such as, for example, mean
and variance of message transfer delay, service waiting times, failure rates, utilisation, etc. In a soft
real-time system one typically considers constraints like:

the system should perform an activity before time t in 92% of the cases

This paper proposes a specification model for soft real-time systems. This model, called stochastic
automata, borrows ideas from timed automata [2] and generalised semi-Markov chains (GSMPs, for
short) [19,49]. Stochastic automata extend transitional automata with variables that we call random
clocks or simply clocks. On entering a state, clocks are initialised by sampling a (continuous, discrete,
or singular) probability distribution. Once clocks are initialised they run backwards, all with the
same rate. An edge in the automata is labelled with a pair (a, C), where a is an action and C is a
set of clocks. Such edge represents a transition that is able to offer action « once all clocks in C
have expired, that is, when all clocks in C have taken a non-positive value. Stochastic automata are
amenable to composition, thus allowing for a modular and hierarchical construction of models.
The compositionality aspects are further studied in an accompanying paper [13].

1.2. Probabilistic transition systems

The semantics of stochastic automata is defined in terms of probabilistic transition systems,
which are labelled transition systems that contain two disjoint sets of states: probabilistic and
non-deterministic states. This model is inspired by [21,42,43,46]. Paths through a probabilistic tran-
sition system are sequences of alternating non-deterministic and probabilistic states. From each
probabilistic state, there is exactly one outgoing probabilistic transition. Therefore, probabilistic
transitions are defined by a function that maps a probabilistic state onto a probability space whose
sample space ranges over the set of non-deterministic states. This sample space will usually be of
an uncountable nature since we use probabilistic transitions to give an interpretation to the ran-
dom clock settings of a stochastic automaton. Non-deterministic transitions are labelled transitions
as in ordinary labelled transition systems. To give an interpretation to the stochastic timings in a
stochastic automaton, we label these transitions with pairs (a, d) where a is an action name, and d
a non-negative real number, indicating the time at which action a happens.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 3
1.3. Bisimulation relations

When studying the behaviour of systems it is important to be able to check whether two systems
behave in the same manner. There are many reasons why this is important. For instance, it would
help to answer whether the model of a system implementation conforms to its specification. Another
reason is that whenever two systems show equivalent behaviour, one of them could be replaced by
the other as part of a larger system. In the non-stochastic setting, a well-understood method to deal
with these matters that is widely accepted, is to model the specification and the implementation by
labelled transition systems and then compare them according to an appropriate notion of equiva-
lence. One of the most prominent notions is bisimulation [37]. This paper studies several notions of
bisimulation on stochastic automata. These bisimulation relations range from notions that compare
solely by inspecting the structure of the two stochastic automata while neglecting the probabilistic
information, to more complex equivalences that take the stochastic timing information fully into
account. Probabilistic bisimulation—basically a continuous version of Larsen and Skou bisimula-
tion [36]—is defined on probabilistic transition systems and is lifted to stochastic automata in two
different ways. Besides, a symbolic probabilistic bisimulation is defined that facilitates the com-
parison of the probabilistic behaviour of stochastic automata without considering their underlying
(infinite) probabilistic transition systems. The relationship between the (four) defined bisimulation
relations is studied. In an accompanying paper [13], the congruence properties of these bisimulations
are studied.

1.4. Organisation of the paper

Section 2 introduces probabilistic transition systems and probabilistic bisimulation. Stochastic
automata, their semantics, and several notions of equivalence are defined in Section 3. Section 4
studies the relation between stochastic automata and GSMPs. Section 5 describes related work, and
Section 6 concludes the paper.

2. Probabilistic transition systems

This section introduces probabilistic transition systems and a fundamental equivalence relation:
probabilistic bisimulation.

2.1. The model

Probabilistic transition systems generalise labelled transition systems by encoding probabilistic
steps in a probabilistic transition relation. A probabilistic transition is a function that maps a state
onto a probability space whose sample space ranges over the set of states. We consider a model in
which probabilistic and non-deterministic transitions strictly alternate along any possible execution.
The set of states is partitioned in two subsets: the probabilistic states, to which exactly one possible
probabilistic step is associated per state, and the non-deterministic states which have zero or more
outgoing non-deterministic transitions.

4 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Whereas most probabilistic models in the literature [47,39,36,17,21,42] focus on discrete prob-
ability spaces, probabilistic transition systems are aimed to cope with general probability spaces,
including discrete, continuous, or singular spaces. This generalisation allows the representation of
real-time systems in which time constraints are not necessarily deterministic but depend on some
random factor.

For this and subsequent sections, some basic mathematical foundations of probability theory
are needed. For a brief introduction into these concepts, the reader is referred to Appendix A.

Definition 1. Let Prob(H) denote the set of probability spaces (2, F, P) such that Q C H. A proba-
bilistic transition system (PTS, for short) is a structure PTS = (%, ¥/, £, T, —) where:

(1) X is the set of probabilistic states.

(2) ¥’ is the set of non-deterministic states such that ¥ N ¥’ = @.

(3) L is a set of labels.

(4) T : ¥ — Prob(Y) is a (total) function, called probabilistic transition relation.
(5) — C ¥ x L x X is the labelled (or non-deterministic) transition relation.

The pair (PTS, og) with initial probabilistic state g € X is called a rooted PTS.

. ¢ ¢ ¢ ¢
We use the shorthand notations o’ — o for (0/,£,0) € — ,0’ — for (0. 0/ — o),and o’ >
¢
for —=(¢/ —).

Example 2. Tossing a fair coin can be modelled by the following PTS with:

X = {00} T(og) = (X, (X)), P),
Y = {op, 01} Oh ead 00,

i
L = {head, tail} o, LN 0y.

where P is the unique probability measure defined by P({o3}) = P({o,}) = % This PTS is depicted
in Fig. 1, where states are represented by dots, probabilistic transitions are represented by dotted
arrows joined by a dotted arc, and non-deterministic transitions by solid arrows.

As an example that exhibits non-determinism, consider a player who tosses a fair coin but cheats
whenever the contender does not pay attention. In such case, he will choose arbitrarily according
to his convenience. Fig. 2 depicts the PTS that models this behaviour given that the contender gets
distracted with probability %

head tail

Oh Oy

Fig. 1. Tossing a fair coin.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 5

00

head tail

Oh 3.

~l—

; cheat cheat ;
Och Oct

Fig. 2. Tossing a coin and cheating.

In the context of this paper, our interest is to deal with time information. Therefore, we label
non-deterministic transitions with timed actions, that is, we consider the set of labels £ = A x R >,
where A is a set of action names and IR > is the set of non-negative real numbers, which are intended
to denote the (relative) time at which an action takes place. We denote a(d) whenever (a,d) € £ and
it means “action a occurs right after the system has been idle for d time units”.

Example 3. Consider an automatic switch that controls a light as it can be found in a staircase or
corridor in a hotel. People can arrive at any time and press the “on” button either to turn on the
light or to reset the timer that controls it. The interarrival time is a Poisson process with an arrival
every 30 min. Hence, the time difference between two persons turning on the light is a random
variable with the (negative) exponential distribution F,30(f) =1— e . Suppose the light turns
itself off after 2 min. This mechanism is thus governed by the deterministic distribution defined by:
Dy (t) = if (t < 2) then O else 1.

The behaviour of the switch can be modelled by the rooted PTS (Switch, 0;,;,), where the com-
ponents of Switch are defined as follows:

E = Gy 0o} U (0,7} X Rs0) ' = R UR>0 £ = {on, off} x Rxo ,

T(0;) = R(Fe30) d.d" M) Oun <d—if> 0<d<d,
d/
T(0,,) = R(Fe30,D2) (d,d’) D, (@ppp-d — d) &L o< d <4,
on(d) def

T(oof,d) =Trivd d—— o

on

— 0<d.

Here, R(F.30,D>) is the probability space on the real plane (cf. Appendix A) with the unique prob-
ability measure obtained from the distributions F, 30 and Dy, and Triv(d) is the trivial probability
space on the sample space {d}.

The rooted PTS can be explained as follows. The system starts in probabilistic state o, ;, where
the light is assumed to be off. From this state, a probabilistic transition is emanating in which the
first arrival time d is randomly determined according to F; 3. The resulting state d is an element in

the sample space R > of T(0;,;,) = R(Fe30). In this state, the transition d ﬂ) o,, canbe taken,
indicating that the light is turned on after d time-units. In the resulting state o,,, a probabilistic
transition takes place. It randomly determines the time at which the next arrival will occur and the

time at which the light turns itself off. This is registered by a tuple (d,d’) where d is the remaining

6 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

time to the next arrival, and d’ is the remaining time to switch off the light. Notice that &’ = 2 with
probability 1, and d is selected as just above.

Now two situations may occur: either the next arrival will happen soon enough, before the light
turns itself off (in which case d < d’), or the light will turn off before somebody arrives (d’ < d).
In the first case, the “on” button is pressed and both time values need to be set again. This is

represented by the transition (d,d") ﬂ) o,,- In the other case, the light turns itself off. This is

e
modelled by the transition (d,d’) M (o, "> d—d'); the value d—d’ is the remaining time until

the next arrival. From state (Cp d), a probabilistic transition leaves with a trivial probability space
containing only element ¢ where the switch waits until it is turned on again.

2.2. Probabilistic bisimulation

Probabilistic bisimulation [36,43] is extended to the general setting of PTSs.
Definition 4. Let (X, X/, £,7,—) beaPTS and i : £ x §2(¥') — [0, 1] be defined by

wf |PSNQ) ifSNQeF,
wu(o,S) =

0 otherwise,

provided that T(o) = (2, F,P). Let RC (¥ x X)U (X' x ¥) be an equivalence, and ¥'/R be
the set of equivalence classes in ¥’ induced by R. R is a probabilistic bisimulation if for any
(01,02) € R:

(1) forall S € X'/R, (o1, US) = u(on,US), whenever 01,0, € X; and
(2) forall¢ € L, o1 N o| implies o> N o4 and (01,05) € R, for some o), € X, whenever 01,07 €
¥,

States o1 and oy are probabilistically bisimilar, notation o1 ~, 02, if there exists a probabilistic
bisimulation R with (o1,02) € R. The rooted PTSs (PTSi,01) and (PTS»,02) are probabilistically
bisimilar if o1 ~, 07 in the (disjoint) union of PTS; and PTS,.

Although the definition of probabilistic bisimulation coincides with traditional definitions in
the discrete case, e.g., [36,22,43], we remark a necessary difference. In the discrete case, instead of
transfer property 1 of Definition 4, it suffices to insist that

11(01,8) = (02, S) for all S € ¥'/R, ey

i.e., S is an equivalence class instead of a set of equivalence classes. In our case, condition (1) is too
weak to deal with, for instance, continuous distribution functions. This is shown in the following
example.

Example 5. Let PTS; = ({0;},IR x {i},IR, T;, —;), for i € {1,2}, where (d,i) in o;, and Ti(o1)
and T»>(07) are the probability spaces for a uniform distribution on [0,1] and [1, 2], respectively.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 7

(PTSy,01) %#p (PTS>,07) since o1 and o, do not agree in their probabilities and hence fail to satisfy
the first constraint in Definition 4. However, if the weaker constraint (1) is considered, the relation

R ={(0i,05) | i,j € {L2JU{((d,D),(d,)) | d e R A i,j€{l,2}}

would be a probabilistic bisimulation since the probability of a point in a continuous probability
space is 0.

When proving bisimilarity, the case u(o, US) = 0 requires special attention. The following propo-
sition states that it suffices to consider only (o, US) > 0.

Proposition 6. R is a probabilistic bisimulation if and only if R is an equivalence relation and for all
(01,02) € R :

(1) forall S € ¥'/R, u(01,US) > 0 implies (o1, US) < u(on,US); and
(2) forall ¢ € L, o LN o} implies o2 N o} and (01,05) € R, for some o} € X.

(194

Proof. The “only if” part is trivial. For the “if” part it suffices to prove that the first transfer
property in Definition 4 is implied by the first condition above. Suppose (o1, US) > 0. Then
w(o1,US) < u(or,US) and, hence, (o2, US) > 0. By symmetry of R, (o2, US) < (o1, US). Hence,
(o1, US) = u(or,US). For (o1, US) = 0, the proof follows by contradiction. Assume (o, US) #+
(o2, US). Then w(op,US) > 0. Since R is symmetric, u(o3,US) < u(oq, US) which contradicts our
assumption. [J

Some classic results of non-probabilistic bisimulation do not hold in the probabilistic setting.
For instance, the union of two probabilistic bisimulations is not always an equivalence relation,
and therefore, may not be a probabilistic bisimulation. The transitive closure of the union of two
probabilistic bisimulations, however, is a probabilistic bisimulation. This result is essential to prove
that ~, is an equivalence relation and, hence the largest probabilistic bisimulation.

Theorem 7. If (R;)ics is a (not necessarily finite) family of probabilistic bisimulations, then ({_;c; Ri)*
is a probabilistic bisimulation.

Proof. Since each R; is an equivalence relation, (|;c; R)* is an equivalence relation too. It remains
to check the conditions of Definition 4. Let (0,0”) € (U;c; R)*. Then by definition of transitive
closure there are o1,...,0, (for n > 0) such that oR;,01R;, ... R;,_,0,R;,0’ with i; € I for all j < n.
Let § € X'/(U;e; R)*. For each j < n, Ri; € (U;es RD*, and hence, there exist Si; € Y'/R;; such
that US = (J S;;. Consequently,

M(Gs US) = /’L(O-la US) == I‘L(O-I’laUS) = M(G/a US):

which proves the first transfer property in Definition 4. The second transfer property follows in a
straightforward way. 0O

Corollary 8. ~, is the largest probabilistic bisimulation.

8 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Proof. Let % be the set containing all probabilistic bisimulations. By definition, ~, is the smallest
set containing all relations in 9. By Theorem 7, we calculate

~,=UR C (UR)* C~, .

As a consequence, ~, = (UN)* is a probabilistic bisimulation. [

As for classical bisimulation, we can define the notion of probabilistic bisimulation up to ~,
and show that finding a probabilistic bisimulation up to ~, suffices to prove probabilistic bisimi-
larity.

Definition 9. Let (2, Y, £,7,—)beaPTSand R C (X x X) U (¥’ x ¥') a symmetric relation. R is
a probabilistic bisimulation up to ~ , if for all (o1,02) € R:

(1) forall§ € ¥'/(~, UR)*, u(o1,US) > 0 implies u(o1,US) < u(o2,US); and
(2) forall¢ € L, o1 LN o} implies o N o and (07,0%) € (~, UR)*, for some o} € X.

Theorem 10. Let R be a probabilistic bisimulation up to ~, . Then:

R C (~pUR" < ~,

Proof. According to Corollary 8, it suffices to prove that (~, UR)* is a probabilistic bisimulation.
It is easy to check that (~, UR)* is an equivalence relation. It remains to check that (~, UR)*
satisfies the transfer properties in Proposition 6.

By definition, we have (~, UR)* = [J,.¢(~p» UR)". This facilitates a proof by induction on .
The case for n = 0 reduces to check that the identity relation is a probabilistic bisimulation, which
is straightforward. For the inductive case, suppose (01,02) € Ug<jcps1(~p UR)". Then there is a
o € XU Y such that (01,0) € Uyepe, (~p UR)" and (0,07) € ~p UR. For each transfer property
we proceed as follows:

L. Let S € ¥'/(~, UR)* and p(o1,US) > 0. By the induction hypothesis, 1(o1,US) < u(o, US). Be-
sides, (o, US) < (o, US) either because (0,02) € ~, and Proposition 6, or because (0,02) € R
and Definition 9. Therefore, (o1, US) < (o2, US).

¢)) i ¢
2. Suppose 01 — o7. By the induction hypothesis,c — o’ and (o{,0’) € (~, UR)*, for some o’ €
. ¢ . ¢)
X. Besides, 0 — o’ implies 0 — o and either (¢/,03) € ~, or (0’,05) € (~, UR)*, for some

: ;
o) € %, depending on whether (0,02) € ~, or (0,02) € R. Thus, 05 — 04 and (g},0%) € (~,
UR)*, for some oy € . [

3. Stochastic automata
Probabilistic transition systems constitute a framework for the description and comparison of

processes with stochastic behaviour. However, they become uncountably large—both in the number
of states and in the number of transitions—as soon as systems are modelled with random timing

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 9

behaviour, cf. Example 3, the model of the light switch. To overcome this problem, this section
introduces stochastic automata, a model that allows the representation of such systems in a finite,
symbolic way. Stochastic automata are inspired by the so-called generalised semi- Markov processes
(GSMPs) [49,19,8,44] and timed automata [2,26]. They extend automata with random clocks which
are intended to control the random time of the different activities.

This section is organised as follows. Section 3.1 introduces (random) clock variables. Section 3.2
defines stochastic automata. The concrete semantics of stochastic automata in terms of PTSs is
defined in Section 3.3. Finally, Section 3.4 studies notions of equivalence for stochastic automata.

3.1. Random clock variables

Like timed automata, stochastic automata resort to clock variables to control and observe the pas-
sage of time. Since in our context the time at which events occur is random, clocks are in fact random
variables. When a clock is set, it takes a random value whose probability depends on the distribution
function of the clock. As time evolves, clocks count down synchronously, i.e., all do so at the same
rate. When a clock reaches the value zero, “the clock expires” and this may enable different events.

Let C be a given set of (random) clock variables such that each clock x € C has an associated dis-
tribution function Fy. Let V be the set of all valuations v : C — IR. A valuation provides the current
value of a clock, e.g., v(x) = 3.12 states that the current value of clock x equals 3.12. Note that clocks
may take a negative value; this takes place when one has to wait for the expiration of a set of clocks,
and some clocks of such set expire before others. Since clocks decrease as time evolves, v—d is used
to denote the valuation which is obtained d time-units after the valuation v was observed. Formally,
ford e Rypandx € C, let

def

(v —d)x) = v(x) —
As mentioned before, clocks take random values whenever they are set. Several clocks can be set
simultaneously and can take different values according to their distribution. Suppose the set C € C

of clocks needs to be set in the valuation v. For simplicity, assume that C is ordered and let C denote
this ordered set. If is the cardinality of C, and d e R" *, are the (randomly) chosen values for each

clock in C, then v[C <~d] denotes the valuation after setting the clocks in C and is defined by

def Zl(i) ifx = 6(1’), forsomei € {l,...,n},
€ it = {v(x) otherwise,

where E’(i) and d (i) denote the ith element of Candd , respectively.
3.2. The model
Definition 11. A stochastic automaton is a structure SA = (S, A, C,—, k) where:

e Sisaset of locations.
e Aisaset of actions.

10 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

e Cis aset of (random) clocks, each x € C has associated a distribution F.
e — C S x (A x 86,(C)) x Sisthe set of edges.
ok : S — qn(C) is the clock setting function.

Note that the sets S, A, and C are countable, i.e., these sets are not required to be finite. Sometimes,
it will be convenient to distinguish an initial location sg € S. The structure (SA, s¢) is called a rooted
stochastic automaton.

We write s 25> s’ whenever (s,a, C,s') € — and call C the trigger set of the edge s —2S» s, If

. . ,.C . C
there exists some location s’ such that s —==» s, we write s ——»

To eachlocation s a finite set of clocks «(s) is associated. On entering location s, any clock x in «(s)
isinitialised according to its probability distribution function . Once initialised, the clock variables
count down at the same rate of letting time pass. A clock expires if it has reached the value 0. The
occurrence of an action is controlled by the expiration of clocks. Thus, whenever s €, ¢ and the
systemisinlocation s, action a can be offered once a/l clocks in the set C have expired. In this situation,

the edge s € ¢ becomes enabled. After taking the edge, the system moves to location s'. If, after
the expiration of a (possibly empty) set of clocks, more than one edge outgoing from s is enabled, an
enabled edge is selected non-deterministically.

Example 12. The light switch of Example 3 can be symbolically described by the stochasticautomaton
def
System = (S, A,C,—, k) where

S=tsosns) 02 s iso) = 1)
s on,{x} 51

A=omoffy T T k(s = ey
S1 —’y>. S2

C = {xa y}, on,{x} K(SZ) =9

§) — 5]

with F, = F, 30 and F, = D>. Fig. 3 depicts the stochastic automaton System. Circles represent loca-
tions, variables in each location are the clocks required to be set by function «, and edges are repre-
sented by the arrows. For convenience, sets are denoted as lists without enclosing braces. The initial
location in the rooted stochastic automaton (System, sg), is represented by a small incoming arrow.

Example 13. Consider a simple queuing system in which jobs arrive and wait until they are executed
by a single server. Assume that the queue has infinite capacity. Jobs arrive with an interarrival
time that is determined by some distribution F, and the execution time of a job by the server is
determined by a distribution function F,. Suppose that both distribution functions are continuous.
This system is known as a G/G/1/00 queue, where the G’s stand for general distribution of the
arrival and service process, respectively, 1 indicates that there is only one server, and oo says that
the queue has infinite capacity. (The curious reader is referred to, e.g., [28,23,8] for more details.)
The stochastic automaton Queue describing the behaviour of the G/G/1/oo queue is depicted in
Fig. 4.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 1

Fig. 3. The switch.

0,a) (1, a) (2,a) (3,a)

a, {x} a, {x} a, {x} ° a, {x}

a, {x} a, {x} a, {x} a, {x}
e (v o () o {y} / o {y)

¢ {y} a o {y) ¢ {y} o {y}

(0, ¢) (1,¢) (2,c) (3,¢)

Fig. 4. Stochastic automaton of a G/G/1/00 queue.

The different components of Queue are:

S={la)|i>0ac{ac) (o) -2 itla),
A ={a,c} (i+1a) e, (i, c),
C= {x,y} Fy=F,and F), = F,
N R R AN O)
kel _{{x,y} if i=1, K(<”c>)_{@ if i=0,

wherei > 0and « € {a,c}.

Locations in this automaton are pairs where the first component indicates the number of jobs in
the system (i.e., queue and server), and the second component indicates whether a job has just arrived
(action a) or it has just been completed (action c¢). Notice that after an arrival (i.e., an occurrence of
action a), a location is reached in which clock x is set, and after the completion of a job (i.e., a c-action)
a clock y is set with the only exception of location (0, ¢). Clock x thus controls the job inter-arrival
time while y controls the service delay.

Initially, the queue is assumed to be empty and no job is being served. Therefore, this behaviour
is modelled by the rooted stochastic automaton (Queue, (0, a)). Observe that at location (l,a) the
event that have just arrived is the one to be served. Thus, both the time of the next arrival as well
as the completion time are determined. Therefore, both clocks x and y are set in (1, a). At location

12 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

(0, ¢), however, the last job has just been served, and the time for the next job arrival has been already
determined. Hence no clock is set in this location.

3.3. Semantics of stochastic automata

The semantics of stochastic automata is defined in terms of PTSs. In fact, we define two different
semantics. The firstinterpretation regards the stochasticautomaton asamodel of a closed system, that
is, a system that is complete by itself and requires no external interaction. The second interpretation
regards the stochastic automaton as a model of an open system, i.e., a system that cooperates with the
environment or is intended to be part of a larger system.

3.3.1. The closed system view

When regarding a system as closed, one not only models the components of the system but also
the environment with which it interacts. In this way, an action of the whole system can take place as
soon as it becomes enabled since there is no external agent that may delay its execution. That is, closed
systems possess the maximal progress property. We refer to this interpretation as the closed system
behaviour or closed behaviour for short.

Given a stochastic automaton (S, A, C,—, k), its closed behaviour is defined by a PTS. We iden-
tify its states by the location in which the system is plus the values of the clocks at the current time.
Therefore, the set of possible states is given by all the pairs of locations and valuations, i.e., the set
S x V. Since we need to differentiate between probabilistic and non-deterministic states, we enclose
probabilistic states between parenthesis and non-deterministic states between square brackets. Thus,
(S x V) is the set of probabilistic states with elements ranging over (s,v), (s;,v;),...,and [S x V]is
the set of non-deterministic states with elements ranging over [s, v], [s;, vi],

To define the probabilistic transition relation we need to resort to probability theory. The basic
concepts are formally defined in Appendix A. Lets € S bealocationandv € V be a valuation. Sup-
pose #k(s) = n. We define the function D} : R” — [{s} x V] by

Dy E [5,0lk) <]

for all d € IR™. Notice that D; 1s injective. Let R(F, . . ., F;) be the unique probability space induced
by the distribution functions 1, . . ., F}, in the n-dimensional Borel space. Then Di(R(F, . . ., F},)) is the
decoration of R(F, ..., Fy,) according to D; (for a definition of decoration, see Appendix A).

For convenience we use the predicate exp, (v, C) which is true if and only if all clocks in C have
expired in v after d time units, i.e., exp, (v, C) is defined as:

VxeC. (v—d)x) <0

and the predicate mpr (s, v) which is true if and only if there is no possibility to leave s before d time
units, i.e., mpr (s, v) is defined as:

b,C
Vd' € Rsg. d' <d = (Vb,C. (s—» =3yelC w-d)y > 0)) .

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 13

Definition 14. Let SA = (S, A,C,—, k) be a stochastic automaton. The closed (system) behaviour of
SA is defined by

PTS.(SA) ¥ (S x V),[S x VI, A x Ro, T, —)

with 7 and — defined by the following rules:

—
k() = (x1,...,Xpn)
Prob 3
T(s,0) = Dy(R(Fy, ..., Fy,))
4Ly exp,(v,C) mpr (s, v)
Closed ’ >

[s, 7] LN (s, (v — d))

The closed behaviour of the rooted stochastic automaton (SA, sg) in the initial valuation vy € V is
the rooted PTS (PTS.(SA), (s0,v0)).

The edge s € ¢ is called enabled in the valuation v if it induces a non-deterministic transition
outgoing from [s, v]. The next edge to be taken is thus one of the enabled edges. Note that s —2Z» ¢’ is
enabled for any valuation v (even if v is negative for all clocks) as it can occur immediately, i.e., after
a delay of O time units.

According to Definition 14, for each location s and valuation v there is exactly one probabilistic
transition. Moreover, probabilisticand non-deterministic states strictly alternate. So, for any stochas-
tic automaton SA, PTS.(SA) is indeed a probabilistic transition system.

Let us explain the inference rules. Rule Prob considers the setting of the clocks in «(s). Since
the values of the clocks are assigned randomly, a probabilistic transition corresponds to this
step. Starting from the probabilistic state (s,v), a probabilistic transition is made to the non-
deterministic state [s,v’] where v’ equals v except that all clocks x; in «(s) are initialised accord-
ing to their distribution function F,. This is established by the decoration Dj(R(Fy,...,Fx,)).
Note that the location does not change in this case. Rule Closed can be explained as follows.

Assume that the system is at location s with current valuation v. In this state, an edge s R
induces the execution of action « after delaying d time units if at this moment all clocks in C

have expired (i.e., exp, (v, C) holds), and moreover, no edge (including s aCy) at the same
location became enabled before (i.e., mpr,(s,v) is satisfied).

Example 15. Following Definition 14, the closed behaviour of the stochastic automaton System
of Example 12 is given by:

PTS.(System) = ((§ x V), [S xV] ,AX R0, T, —),

14 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

where

T (s0,0) = DY (R(FR)) T (s1,0) = D)) (R(Fx, Fy)) T (s2,0) = D (RO),

[s0. ¢ 1=,y 1= d)] 2L (51, (0= 0,y i=d' —d)) = 0<d,
[s1.0c=doy i=d)] 2 (.= 0,y i=d' —d)) = 0<d<d.
bnai=dy=d)] LY (. =d—d,y:=0) < 0<d <d,
[= d,y = d)] 225 (sn.c=0y:=d —d) > 0<d.

Choosing vy with vg(x) = vo(y) = 0 as the initial valuation, the rooted PTS (PTS.(System),
(s0,v0)) defines the closed behaviour of the rooted stochastic automaton (System,sp).

3.3.2. The open system view

An open system is a system that interacts with its environment. The environment can be a
user or another system. Basically, an open system is a component of a larger system.

To study reachability properties like freedom from deadlock, it is important to observe how
the system behaves in an arbitrary context. That is, the interaction of a system with a certain
“well-behaved” component may not induce a deadlock, while a “badly behaved” component
could take the system through an undesired path that will end in a deadlock situation. To
study these situations, the interpretation of a stochastic automaton as a closed system is not
sufficient. Instead, if we interpret a stochastic automaton as an open system, the possibility of
interacting with its environment would be considered. In this case an action that is enabled
cannot be executed until the environment is also ready to perform it. Therefore, the maximal
progress property is dropped in the open semantics.

Definition 16. Let SA = (S, A,C,—, k) be a stochastic automaton. The open (system) behaviour
of SA is defined by

PTS,(SA) ¥ ((S x V),[S x VI, A x Rug, T, —),

where T is defined by rule Prob as in Definition 14 and — is defined by:

c
s <>’ exp, (v, C)

[s, 0] @, (s', (v — d))

Open

The open behaviour of the rooted stochastic automaton (SA,sg) in the initial valuation vy € V
is the rooted PTS (PTS,(SA), (s9,v0)).

The only difference between the open and closed semantics is that the constraint of maximal
progress is present in the inference rule Closed but not in Open. In the open behaviour, non-
deterministic transitions with different time labels may leave the same state, whereas this is
impossible in the closed behaviour.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 15

Example 17. According to Definition 16, the open behaviour of stochastic automaton System
of Example 12, PTS,(System), consists of the same components as PTS.(System) in Example
15, except that — is defined by:

,x:=d,y=d")| —— ond

sp,(x:=d,y:=d")| ——
sp,(xi=dy:=d")| ——
s2,(x:=d,y=d")| —

(sl (x:=d—d,y:=d"— d)) —

0
Dy (sni=d—d,y=d"—d) < 0<dAd <d.
0
0

(sz,(x =d—d,y =d"— d)) —

on(d) (Sl,(x = d— d y L d)) —

[s0 | —
[| —
[] off (d)
[| —

Notice that there is no correlation between the values d’ of x and d” of y. The only require-
ment is that the time d of occurrence of an action is positive and beyond the time at which
the edge becomes enabled (cf. Example 15).

3.4. Equivalences on stochastic automata

By lifting the probabilistic bisimulation of PTS to stochastic automata, we obtain two differ-
ent notions of equivalences depending on whether the closed behaviour or the open behaviour
is considered.

Definition 18. Locations s; and s> of stochastic automaton SA are closed p-bisimilar, denoted
s1 ~c¢ s2, if for any valuation v eV, (s;,v) ~, (s2,v), where (s;,v) and (s2,v) are states in
PTS.(SA). The rooted stochastic automata (SAy,s;) and (SAj,sz) are closed p-bisimilar if

(PTSc(SA), (s1,v0)) ~p (PTS:(SA2), (s2,v0)) for every vp € V .

For the open behaviour PTS,(SA), open p-bisimilarity, denoted ~,, is defined in a similar way.
It is immediate that ~. and ~, are equivalences on the set of locations S. Both open and closed
p-bisimulations require to deal with infinite state spaces as well as measure theory. In the following,
we define relations that, though strictly finer, allow for symbolic reasoning on stochastic automata,
therefore providing a simpler and clearer framework to prove open or closed p-bisimilarity.

The strongest relation that we consider is isomorphism. Two stochastic automata are isomor-
phic if there exists a bijective function that maps locations from one automaton to locations
of the other without disturbing the structure of the stochastic automaton. (The notion of iso-
morphism could be extended by allowing bijections on the sets of clocks and the actions, but
this may not preserve open and closed p-bisimilarity in general.)

Definition 19. SA = (S, A,C,—,«) and SA" = (S§', A,C,—', k) are isomorphic, notation SA=SA’,
if there is a bijection Z : S — S’ such that:

(1) s 25— T(s) 2“5’ 7(s'), and

(2) k(s) = K'(Z(s)).

16 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Function Z is called an isomorphism. The rooted stochastic automata (SA,so) and (SA’,s;)
are isomorphic if SAZSA" and Z(sg) = s,

Structural bisimulation is a slightly weaker equivalence than isomorphism. It is a bisimula-
tion on stochastic automata that preserves both actions and sets of clocks.

Definition 20. Let (S, A,C,—, k) be a stochastic automaton. A relation R € S x S is a structural
bisimulation if R is symmetric and for all a € A and C € C, whenever (s;,s2) € R the following
transfer properties hold:

g)) s1(;l—’c> s(i, ;mplies 52 a—’C>s/2 and (s},s5) € R for some s, € S; and
k(s1) = Kk(s2).

s1 and sy are structurally bisimilar, notation s ~ s, if there exists a structural bisimulation R
such that (si,s2) € R. Two rooted stochastic automata (SAj,s;) and (SAz,s2) are structurally
bisimilar, if s; ~; s> in the (disjoint) union of SA; and SA,.

Structural bisimulation up to ~; is useful to prove structural bisimilarity.

Definition 21. Let (S, A,C,—, k) be a stochastic automaton. A relation R C S x S is a structural
bisimulation up to ~ if R is symmetric and for all « € A and C € C, whenever (s1,s2) € R the
following transfer properties hold:

(1) s1 a—’c>s1, implies s, a—’C>S/2 and (s],s5) € (~; UR)* for some s, € S; and
(2) k(s1) = K(s2).

The proof of the following theorem closely resembles the proofs of each of the enumerated
facts for strong bisimulation [37] and is therefore omitted.

Theorem 22.

(1) ~ is a structural bisimulation, and
(2) ~5 is an equivalence relation on the set of locations.
(3) R is a structural bisimulation up to ~ implies R C (~; UR)* C ~q.

Structural bisimulation is defined directly on stochastic automata, but does not consider
any stochastic information. Simple modifications to the stochastic automaton like changing the
name of a random variable while preserving the probability function, or setting clocks that
will never be used, do not lead to any behavioural difference. An example is shown in Fig.
S5A, where clock z is never used, while x and y are synonyms. Similarly, a clock that has al-
ready expired—and never set again—is irrelevant, as shown in Fig. 5B. Here, in location s}
clock x has already expired (and not set again), and therefore is not of any importance any-
more. Moreover, a unique clock may replace a set of clocks if they are always initialised and
triggered together, as in Fig. 5C. (The distribution function of the maximum of a set of in-
dependent random variables is defined in Proposition 43.) Open and closed p-bisimilarity do
take the probabilistic behaviour into account, but are defined in terms of the underlying, infinite

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 17

S1 t Sl t $2
Fs
a ~o
N ~

/ /
51)

b
with F = F), x (]

s such that
o F;c(t) = Fmax{y,z} (t)
= F,(0) - F(0)

Fig. 5. Examples of non-structurally bisimilar stochastic automata.

=
o
=

PTS. Probabilistic information can be considered at a symbolic level too by defining a symbolic

bisimulation on stochastic automata. As a symbolic bisimulation needs to relate clocks, we syn-

tactically characterise those clocks which are important to take into account. Basically, a clock

is relevant if it is used somewhere, that is, it is in some trigger set on some edge. For finite
ap,Co a1,Cy a,,Cy . . . e . L.

path 5o —2=0p g =Ly . Antny o 1 clock x is relevant in location s; if j > i is the smallest

index such that x € C; and x is not set in s; through s;. This notion is lifted to locations as

follows.

Definition 23. Let (S,.A,C,—,«) be a stochastic automaton. The set of free clock variables of
location s € S, denoted by Fv(s), is defined by the smallest set satisfying

Fv(s) = {x | s 4 Y AxeCU Fv(s/)} — k(s).
The set of relevant clock variables for location s € S, denoted Rel(s), is defined by

Rel(s) & {x 1525 ¢ Ax e CUFV(S)}

Intuitively, clock x is relevant in location s if for any path starting from s the following
holds: if x is in the trigger set of (some edge of) some location along the path, then x is not
set until it has triggered some edge along the path. A clock is free in s if, in addition, it is not

18 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

set in 5. Therefore, Fv(s) = Rel(s) — k(s). Note that «(s) C Rel(s) may not hold, e.g., clock z is
not relevant in location sy in the right automaton of Fig. 5A.

A symbolic bisimulation should relate relevant clocks in a particularly organised manner.
Roughly speaking, clocks are related when they are set at the same instant and have corre-
sponding distributions. Therefore, each element in a symbolic bisimulation is a triplet (s, s2, SR)
where s; and s> are the related locations, and SR is a component (called synchronisation rela-
tion) explaining how the clocks relate.

Definition 24. Let C be a set of clocks. For Ci,C,C},C) CC, let
(C1,)T, Ch) &= (CINCHUCNCy) =5 v (CLSClAC CCh.
SR C 8(C) x §(C) is a synchronisation relation if

(C1,C2),(C1,Cy) € SR = (C1, (1) (CY,).

(C1,C2)<(CY, C5) can be read as “(Cy,Cy) is compatible with (C{,C})”. To be compatible,
C and C; should be included in Cj and Cj, respectively, or should not intersect. Notice that
in a synchronisation relation SR all tuples should be compatible with each other, that is,
(C1,C2)<(C, C5) and (CY, C5)<(Cy, C3), for all pairs of tuples in SR. As a consequence, either
(CINC)U(C2NCh) =@ or (C1,Ca) = (C},CY).

Definition 25. Let (S, A,C,— k) be a stochastic automaton. A symbolic bisimulation is a rela-
tion RC S xS xBWEC) x§(C)) that, for all (s;,s5,SR) € R, satisfies the following
properties:

(I) SR 1is a synchronisation relation such that:
(a) for i = 1,2, |J{C;i | (C1,C2) € SR } = Rel(s;);
(b) (C1,C2) € SR implies (Cy, C2) (ke (s1), k(52));
(c) if (C1,(C2) € SR and C; C «(s;), i = 1,2, then, for all t € IR,

erQ F;C(t) = l_[yGC2 Fy(t)

* *
a,C * a,C
(2) sy — s/, then there are s, and C, such that s, —2+), and

(a) (C1,C2) € SR implies (Cy, C2)<C}, Cy); and
(b) (s},s5, SR ') € R for some SR " which is forward compatible with SR , ie.,
{(C1,C2) € SR 1 (CINFV(s) U (G NFVish) # 2] — (R(C) x 9(C))
= {icr.cp e SR nFus) U (€ N Fvish) # o] = () x ().

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 19

* *
a,C. * aC
(3) so —=—), then there are s; and C| such that s; — |, and

(a) (C1,C2) € SR implies (C}, C2)<U(C]',Cy); and
(b) (51,55, SR’) € R for some SR’ which is forward compatible with SR.

Locations s; and sy are symbolically bisimilar, denoted s; ~g s2, if there exists a symbolic
bisimulation R such that (s1,s2, SR) € R for some SR satisfying

if (C1,C2) € SR and x € (C; NFv(s1)) U (Cy; NFv(sy)) then C; = C = {x}. (%)

The rooted stochastic automata (SAj,s1) and (SA»z,s2) are symbolically bisimilar, if s1 ~g& s2
in the (disjoint) union of SA; and SA;.

The synchronisation relation SR in {(s1,s2, SR) explains how the relevant clocks in s; and s
are related. This is mostly explained in item 1. In particular, 1(i) requires that all clocks in SR
are relevant, and conversely, that all relevant clocks are related; 1(ii) states that clocks related
in the same pair must be set simultaneously; and 1(iii) requires that clocks related in a pair
should be set with equal probability in the sense that random variables max(C;) and max(C)
should have the same distribution. Here, the maximum of a set of clocks is taken as we need to
wait until all clocks have expired, i.e., the “slowest” clock determines the overall delay. Recall
(cf. Proposition 43) that the distribution function of max(C) is given by Fmaxc)(t) = [[yec Fx(®)
for all # € R where Fax() () equals the constant function 1.

Items 2 and 3 are the transfer properties, and they state how the edges must be simulated.
If the left-hand side location has an outgoing arrow, the right one has also an outgoing arrow
labelled with the same action name. Moreover, the trigger sets should be compatible with the
synchronisation relation, therefore requiring that clocks in Cl* are appropriately synchronised

with those in C; (conditions 2(i) and 3(i)). Finally, the target locations must be again related
with a new synchronisation relation SR’ which should be forward compatible with SR (con-
ditions 2(ii) and 3(ii)). By forward compatible we mean that SR’ preserves the old relation
imposed by SR for all clocks that are still relevant. Notice that clocks in the previous trig-
ger sets are not required to stay synchronised since they already expired and therefore they do
not impose any restriction on further enabling conditions. This is meant to relate stochastic
automata like the ones in Fig. 5B.

Two locations may be related by a symbolic bisimulation but they are not necessarily sym-
bolically bisimilar. This has to do with the fact that a triplet (s1,s7, SR) “remembers” in SR
how the clocks were related in the past. For two locations to be symbolically bisimilar, their
free clock variables cannot be arbitrarily synchronised. Following the criterion of closed and
open p-bisimulation in which two locations are related if they are related in every valuation
(see Definition 18), we require that SR satisfies the additional condition (x). This condition re-
quires that a free variable is not related to any other variable at the same side and it is related
to the (free) variable of the same name in the other side.

Example 26. The stochastic automata in Figs. SA-C are symbolic bisimilar according to the
respective relations:

20 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Ra = { {s1, 52, {{Ixh, {vD}), sy, 85, @)),
Ry = { {51, 52, {{{x}, &xh)}), (s, 55, {{{x),2)}) }, and
Re={ (s1, 52, {{{x} {0.2D)}), (sp, 5, @))

Theorem 27. ~g is an equivalence relation on the set S of locations.

Proof. The fact that ~g is reflexive follows from Theorem 28 below, which states that ~; C ~.
Symmetry follows from the following: if R is a symbolic bisimulation, it is not difficult to check
that {(s2,51, SR) | (51,52, SR) € R} is also a symbolic bisimulation satisfying condition (%) in
Definition 25 whenever R satisfies it. The proof of transitivity is more involved and can be
found in [1l, Appendix E]. O

Theorem 28. The equivalence relations introduced above are related as follows:

=C~y Cvg T C e

Proof. = C ~;. It follows from the fact that the relation R def {(s,Z(s)) | s € S}, where Z(s) de-
notes the set of states that are isomorphic to s, is a structural bisimulation.

~¢ C ~g&. Let Ry be a structural bisimulation. Notice that for any (s1,s2) € R;, the set of free
clock variables coincides, and as a consequence, the set of relevant clocks coincides as well, i.e.,
Rel(s1) = Rel(s»). We define the relation

Re & {(s1,52, SR) | {s1.52) € RyA SR = {{{x}, {x}) | x € Rel(sp) = Rel(s)} }.

It is not difficult to check that Rg is a symbolic bisimulation. Besides, for any tuple (s1,52, SR) €
Rg&, SR trivially satisfies condition (x) in Definition 25.

~& C ~,. The proof follows from Lemma 44 (see Appendix B). It only remains to notice
that if SR satisfies condition (*) in Definition 25, then any v; = vy satisfies the condition (B.I)
in Lemma 44.

~o C ~c. Let R be a probabilistic bisimulation relation on the open behaviour of SA. Using
Lemma 45 (see Appendix C), it is not difficult to check that R is also a probabilistic bisimu-
lation on the closed behaviour of SA. [

The inclusions in Theorem 28 are strict as shown in Fig. 6. The stochastic automata in Fig.
6A are structural bisimilar, but not isomorphic for evident reasons. The automata in Fig. 6B
are not structural bisimilar, since e.g., the initial locations cannot be related (due to differ-
ent clocks that are set), but are symbolic bisimilar. The automata in Fig. 6C are not symbolic
bisimilar as clock x and clocks y and z are not synchronised, but are open p-bisimilar, as both
automata can perform an a-action after an equal stochastic delay while evolving to equivalent
locations. (The distribution function of the minimum of independent random variables is de-
fined in Proposition 43.) Finally, the stochastic automata in Fig. 6D are closed p-bisimilar as
both automata perform an a immediately. They are not open p-bisimilar, because when max-
imal progress is not considered, action b can take place by waiting long enough in the initial
location.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 21

A v v

B ¥
~s ~&
a a a a
x x 2 x y.z

where Fpax(y.z) () = Fx(f)

O

C ¥ ¥ D v ¥
@ 7& %o
~o0 ~e
a a a a b a
¥ 2 S @ X o
where Fingy,z) () = Fx(0) where F(0) =0

Fig. 6. Comparing equivalences on stochastic automata.

4. Stochastic automata and GSMPs

Generalised semi-Markov processes (GSMPs, for short) [49,19] allow for modelling the be-
haviour of a wide class of discrete-event systems. They generalise continuous-time Markov
chains by allowing, on the one hand, the occurrence time of events to be generally distributed—
not only according to memoryless distribution functions—and, on the other hand, that such a
timing depends not only on the current state but also on the past states. This section defines
GSMPs, defines its semantics in terms of PTSs, and proves that GSMPs are a proper subclass
of stochastic automata.

4.1. Generalised semi-Markov processes

A GSMP is defined on top of an automaton sometimes referred to as generalised semi-
Markov scheme (GSMS, for short). Transitions in a GSMS are triggered by the occurrence of
randomly timed events. A set of active events is associated to each state. These are the events
that are possible in that state, i.e., that can cause the execution of a transition. The remaining
time until the possible occurrence of an event is determined by an implicit clock; we thus have
one clock per event. Clocks are initialised according to a continuous probability distribution
function (that only depends on the current state) and run backwards? , all with the same pace.
We consider discrete-state GSMPs in which transitions are deterministic, i.e., given the current
state and the next event, the next state is uniquely determined.

2 This corresponds to the interpretation of GSMPs with residual lifetimes. An alternative interpretation is to
consider spent lifetimes which corresponds to clocks that run forward, as in [5,6].

22 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Definition 29. A generalised semi-Markov scheme (GSMYS) is a structure G = (Z, £, active, next, F)
where

e Z is the set of (output) states;

o £ 1s a set of events;

e active : Z — §2(&) assigns a set of active events to each output state;

enext: Z x & — Z assigns the next state according to the current state and the event that is
triggered; and

o F: & — (R — [0,1]) assigns to each event a continuous distribution function such that F(e)(0)
= 0; we write F, instead of F(e).

As initial condition a state zg € Z is appointed. A generalised semi-Markov process (GSMP) is
the stochastic process defined by a GSMS.

Example 30. Consider the G/G/1/00 queue of Example 13. A typical GSMP description of such
queuing system is given by the GSMS whose components are defined as follows:

e The set of output states is defined by the non-negative integers Z = IN, where i € Z indicates
the number of jobs in the system. Initially, the system does not contain any job. We therefore
select 0 as the initial state.

e The set of events contains the event a that represents the arrival of a job, and ¢ that repre-
sents the completion of a job. Thus, £ = {a,c}.

e In the initial state 0, there is no job in the system that can be completed. Thus, only an
arrival is possible. In the other states either a new job arrives or a job is completed. Hence,
active(0) = {a} and active(i) = {a,c} for i > 0.

e At any state i, a new job may arrive increasing, as a consequence, the number of jobs in the
system to i+1. At any state i > 0 a job can be completed decreasing the number of jobs by
one. So, next(i,a) = i+1 and next(i+1,¢) =i.

e The distribution functions associated to the events are the functions F, and F, given in Ex-
ample 13.

This GSMS is depicted in Fig. 7 where a state z is represented by a circle, the set active(z) is
given by the labels of its outgoing arrows, and arrows represent the next state function where
z 57 if next(z,e) = 7.

A GSMS behaves as follows. Suppose that the system is in state z. The active events in
active(z) have associated some positive real number. Such number is the time remaining to ex-
ecute the event. All other events (the inactive ones) have no particular associated value. The

Fig. 7. The GSMS of a G/G/1/oco queue.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 23

active event with the smallest associated value is selected to be executed. Say ¢” is that event,
and d” its value. Notice that e* is unique with probability 1, since the timing of every event
in a GSMS depends on a continuous random variable. Thus, the probability that two active
events have the same associated value is zero. The next state is given by next(z, e*). The set of
new events New(z, e*) is given by

New(z,e™) & active(next(z,e™)) — (active(z) — {¢™),

1.e., the events active in the new state which were not active before. The values of these new
events are randomly defined according to their distribution function. The set of old events is
the set of all active events that remain active:

Old(z,e) & active(z) N (active(next(z,e™)) — {e™}).

The value of every old event is decreased by d™ units of time. This mechanism is known as
variable time advance procedure [8,44].

Example 31. In our queuing system example, the sets of new and old events are:

. JHa,c} if i =0, ..o ifi=1,
New(i,a) = { {a} otherwise, New(i,c) = { {c} if i > 2,
1%} ifi=0,

Old(i,a) = { Old(i,c) ={a} fori>1l.

{c} otherwise,

We describe the behaviour of a GSMS in terms of probabilistic transition systems.’

Let z be a state in Z. Let ¢ € active(z) and let V € £ — IR U {L} be a set of valuations,
where | represents the undefined value. Let v € V and suppose n = |New(z, e*)|. We define

*
the decoration D¢ :IR” — [Z x V] by

def

*x -
D (d) € | next(z,e”), v[New(z,e") < d][€ — active(next(z,e”)) < L]

[]

for all d € R”. Stated in words: if the GSMS is in state*z, ¢ is the selected next event, and

d is the value sampled for the set of new events New(z,e), the next non-deterministic state is
. * . . *

determined by the output state next(z,e) and the valuation where the new events in New(z,e ")

take the respective sampled value in d, the inactive events are undefined, while the remaining
events (those in Old(z, e*)) keep their values given by v.

3 In the literature, the behaviour of a GSMS is defined by giving the distribution function of each transition.
This directly corresponds to the probability transition of the probabilistic transition system defined here. For
more information the reader is referred to [19,44].

24 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Definition 32. Let G = (Z, £, active,next, F) be a GSMS. The behaviour of G is the probabilistic
transition system PTS(G) def (%,Y,E x R, T,—) where T C (€ x (ZxV)) and ¥ C[Z x
V] are defined as follows:

y o {<e*,(z, v)) | v(e™) = 0 A (e € active(z) <= v(e) # 1)),

s € 2, 0] | e € active(z) = v(e) # 1}

and 7 and — are defined by the following rules:

*
New(z,e) = (e1,...,e,)

7(h) =D R Foy)

b

¢ cactiver) deRsy (w—d)(e)=0 Veeactve@). (v—die) =0

Iz, 0] @, (e*, @0— d))

For the special case of the initial state we extend PTS(G) with a new distinguished probabilistic
state (zg) and define

active(zg) = (ey,...,en)
T (z0) = D (R(Fyy.... Fe,))

where D0 (c_f) def 20, [active(zg) < 3][8 — active(zg) << L]|. Now, the complete behaviour of G
is defined by the rooted probabilistic transition system (PTS(G), (zp)).

Notice that 7 is in fact a function. As a consequence, PTS(G) is a well-defined probabilistic
transition system.

4.2. Relating GSMPs to stochastic automata

The relation between stochastic automata and GSMPs is shown by providing a mapping
from GSMSs onto stochastic automata. The existence of this mapping indicates that GSMPs
are properly included in stochastic automata. We show that the mapping preserves the under-
lying (closed) behaviour.

Definition 33. Let G = (Z, &, active,next, F) be a GSMS with initial output state zo. The trans-

lation of G into a stochastic automaton is defined by the rooted stochastic automaton (SA(G),

(20,2)) where SA(G) = (2 x (), €, E,— k) with —= defined by

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 25

e € active(z)

(z, E) 295 (next(z,e), active(z) — {e})

and «((z, E)) % active(z) — E.

The mapping introduces a location as a pair (z,E) where z is a state of the GSMP and F is
the set of events that are already active. The initial location is (zg, @). For each active event in
the output state z, there is an outgoing edge from any location (z, E). This edge is labelled with

event e (i.e., the action) and the set of clocks {e}. Therefore active(z) = {e | (z,E) ﬁ»}. Since
in a GSMP exactly one clock is associated to an event, we obtain singleton sets as trigger sets.

There are many locations (z, E) that are unreachable. All reachable locations have the form
(next(z,e),active(z) — {e}) for every (reachable) z € Z and e € E. Notice that, for these reach-
able locations, x((next(z, e), active(z) — {e})) = active(next(z, e)) — (active(z) — {e}) = New(z, e).

Example 34. Fig. 8 depicts the reachable part of the stochastic automaton obtained from the
GSMS model of the G/G/1/00 queue as defined in Example 30. Note that this stochastic au-
tomaton is isomorphic to the one given in Example 13.

The correctness of the translation is stated by showing that the behaviour of a GSMS G is
closed p-bisimilar to SA(G).

Theorem 35. (PTS(G), (z0)) and (PTS.(SA(G)), ((zo, @),v)) are probabilistic bisimilar for any val-
uation v.

Proof. Let relation R be defined by the symmetric closure of the set

{((e*, @, U)> ’ <(neXt(Z’ ¢"), active(z) — {e*}),vl)> | Ve € active(z). v(e) =v'(e)}
U {{(z0),((z0,2),0)) |[veV]
U {{[z],[0),v]) | Ve € active(z). v(e) = v/(e)}

The proof that R is a probabilistic bisimulation up to ~, is routine. [

Notice that a translation of stochastic automata into GSMSs is not possible in general as
stochastic automata allow non-continuous probability distribution functions and may exhibit
non-determinism.

(0.2) (1,2) (2, {ch (3.{ch

O4a) (Lia) O @2da) Ba)
Fig. 8. The translation of the GSMS of Fig. 7.

26 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38
5. Related work
5.1. Probabilistic transition systems

The notion of probabilistic transition systems studied in the first part of this paper is a gener-
alisation of the discrete probabilistic transition systems, like [47,39,36,17,21,42]. This generalisation
allows the representation of soft real-time systems in which time constraints are not necessarily de-
terministic but have some random nature. PTSs are inspired by the discrete probabilistic models of
Hansson [22,21] and Segala [42,43], and are related to the continuous model of Strulo [46,24,25]. Al-
ternating probabilistic and non-deterministic transitions have been introduced by Hansson in a dis-
crete probabilistic model. Strulo considers a continuous extension of Hansson’s alternating model.
These models do not explicitly consider probability spaces as a structure; instead, probabilistic tran-
sitions are labelled with numbers. For continuous distributions this model tends to be cumbersome.
The definition of probabilistic transitions as mappings onto probability spaces of states originates
from Segala. In his model, there is no distinction between probabilistic and non-deterministic states.
As Segala’s work is focused on studying randomised distributed algorithms, discrete probability
spaces do suffice in his setting. It can be shown that discrete PTSs (in our sense) are as expressive
as Segala’s simple probabilistic automata [11]. Cattani et al. [9] have recently proposed stochastic
transition systems as continuous variant of probabilistic automata.

5.2. Probabilistic bisimulation

Probabilistic bisimulation has originally been defined on reactive probabilistic transition sys-
tems by Larsen and Skou [36] and has been adapted to generative [16] and stratified probabilis-
tic models [17]. Hansson considered a variant of probabilistic bisimulation tailored to a discrete-
time version of his alternating model. Segala and Lynch [43] extended Larsen-Skou probabilistic
bisimulation to simple probabilistic automata. Their notion coincides with the discrete variant
of the probabilistic bisimulation defined in this paper. All these works consider probabilities in
a discrete setting. Notions of probabilistic bisimulation in a continuous setting have received
scant attention in the literature. Notable exceptions for the setting with general distributions are
the probabilistic bisimulation in a continuous setting by Harrison and Strulo [46,24,25] which
coincides with our notion, the co-algebraic characterisation of continuous probabilistic bisim-
ulation by de Vink and Rutten [48], the categorical definition of Desharnais et al. [15], and the
recent notion in Cattani et al. [9] that naturally extends trace distributions.

5.3. Stochastic and timed automata

Stochastic automata are a symbolic model for finitely representing continuous-time probabilistic
systems. These automata are inspired by the timed automata of Alur and Dill [2] and generalised
semi-Markov processes (GSMPs) by Glynn [19] and Whitt [49]. (Extensive introductions to GSMPs
can be found in Cassandras [8] and Shedler [44]). Timed automata are extensions of state-transition
diagrams with clock variables. Whereas in timed automata clocks are set to a deterministic value
(and then run forwards), in stochastic automata clocks are initialised according to a probability
distribution function (and run backwards). Similar to timed automata, whose semantics is typically

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 27

defined in terms of timed transition systems that are intrinsically infinite, stochastic automata are
interpreted in terms of infinite probabilistic transition systems, in fact a probabilistic counterpart to
timed transition systems. A translation of stochastic automata into timed automata with deadlines
that abstracts from the stochastic information has been studied in [12]. Other probabilistic exten-
sions of timed automata include discrete probabilistic branching (but not stochastic clocks) [30,31],
and automata in which the location residence time is governed by a distribution that is positive on
a finite set of intervals [1]. Stochastic automata are closely related to the continuous probabilistic
timed automata recently considered by Kwiatkowska et al. [32]. Whereas stochastic automata are
developed for specification purposes, [1,31,32] focus on the model-checking problem and neither
study bisimulation relations nor compositionality issues.

5.4. Stochastic automata and interactive GSMPs

A variant of stochastic automata, called interactive GSMPs, in which clocks run forward has
been proposed by Bravetti and Gorrieri in, amongst others, [5,7]. These variants of GSMPs
(with a residual lifetime interpretation) generalize Hermanns’ interactive Markov chains [27],
and equip GSMPs with non-determinism. [5,7] study (strong and weak) bisimulations and com-
positionality issues (like hiding and parallel composition).

The main technical differences between IGSMPs and stochastic automata are as follows.
In IGSMPs, actions are considered as combinations of start and termination events like in
ST-semantics [18], a well-studied true concurrency semantics. This allows for, for instance, the
transfer of various results from ST-semantics such as weak bisimulations and action refinement
to the stochastic setting. In our case, start and termination events do not always occur strictly
as pairs, e.g., clocks that are set may never be “used” (i.e., terminated), or clocks may be used in
trigger sets more than once. A detailed study reporting extensively on the differences between
these approaches has recently been provided by Bravetti and D’Argenio [6].

6. Conclusions and discussion

This paper presented stochastic automata, a new model for symbolically representing prob-
abilistic transition systems that allow to cope with general probability spaces. Stochastic au-
tomata are in particular suited for modelling softly timed systems, real-time systems where time
constraints are of quantitative nature—“an activity should occur within ¢ time units in 99% of
the cases.” The semantics of stochastic automata have been defined in terms of probabilistic
transition systems with general probability spaces. Notions of (probabilistic) bisimilarity have
been defined and their relationship has been established. Furthermore, we proved that gener-
alised semi-Markov processes are a proper subset of stochastic automata. An important prop-
erty of stochastic automata is their compositional nature. This is discussed in full detail in [13]
where stochastic automata are used as semantic model for a process algebra in which action-
delays are governed by general distributions, and is also illustrated by their use in providing a
semantics to a stochastic extension of UML statecharts [29,20].

This paper does not address the analysis of stochastic automata. Due to the general nature
of the distributions involved, quantitative properties, such as the delay between two activities

28 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

or the probability of a certain behaviour, can be established by means of discrete-event simula-
tion [8,44]. Prior to the simulation phase, non-determinism is resolved by means of adversaries
[43,47]. Simulation of stochastic automata is described in [11,14]. Recently, [50] introduced a
simulation-based method to assess the validity on CSL (Continuous Stochastic Logic) formulas
[3] on GSMPs. As the process is statistically based, answers may be unsound but the likelihood
of error is bounded using statistical hypothesis testing. This technique can therefore be lifted
to stochastic automata. For a restricted set of stochastic automata, the insensitive GSMPs [41],
numerical methods can be used to assess their steady-state behaviour. Alternatively, in case of
absence of non-determinism, approximation results can be employed, and arbitrary distribu-
tions can be approximated by phase-type distributions [38]. This results in a continuous-time
Markov chain for which efficient numerical methods exist. To assess qualitative properties of
stochastic automata such as (untimed) safety properties, standard reachability techniques can
be used such as model checking [10], after abstraction of the stochastic ingredients [11,14,12].

Acknowledgments

We thank Ed Brinksma for his collaboration in this research and Gabriel Infante Lopez who
unrevealed a flaw in the original definition of symbolic bisimulation [l1]. The remarks of the
reviewers have significantly improved the presentation of the paper. Part of this work was done
while the first author was working for the STW/PROGRESS project TES-4999 “Verification
of Hard and Softly Timed Systems (HaaST)” at the University of Twente.

Appendix A. Preliminaries on Probability Theory

This appendix recalls some notions of probabilities which are necessary for the understand-
ing of this article. The reader is referred to [45,33,40] for further reading.

A.1. Probability spaces and measurable functions

Definition 36. Let Q2 be a set called sample space. A collection F of subsets of Q2 is a o-algebra if

1) QeF;
2)4eF = A° e F; and
B)VielN4 e F = Uen4i € F.

The elements of a o-algebra are called measurable sets and the pair (2, F) is a measurable
space. A probability measure on (2, F) is a function P : F — [0,1] such that the following prop-
erties hold:

) P2)=0, Q) =1
2P (UieNAi) = Y ;en P(4;) for every pairwise disjoint family (4;);en of measurable sets in
the o-algebra F (with N C IN).

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 29

The structure (2, F, P) is called a probability space. In particular, if there is a countable set
A € Q such that {a} € F and) ,.,P({a}) =1, P is called a discrete probability measure and
(2, F,P) is a discrete probability space.

The support set of a probability measure is the smallest closed subset of the sample space
whose measure is 1. That is, the support set of P is the set

supp(P) o Q—U{4 e F|4is open* A P4) = 0}.

Definition 37. Let (2,F) and (2, F’) be measurable spaces. A function f : Q — Q' is a mea-

surable function if f~'(4) ¥ {a | fa) e A} € F, for all 4 € F'.

Observe that, if P is a probability measure on (2, F), Po f~! is a probability measure on
(Q,F).
Proposition 38. If f: Q — Q' is a measurable function, (2, F,P) is a probability space and
(Q, F') is a measurable space, then (Q,F,Po f~Y) is a probability space.

Let P = (R, F,P) be a probability space and D : @ — Q' be injective. We lift D to subsets of

Q as usual: D(4) def {D(a) | a € A}. Observe that D(F) def {D(4) | A € F} is a o-algebra on the

sample space D(2). As a consequence, D is a measurable function and, by the previous propo-

sition, D(P) def (D(RQ), D(F),P o D7) is a probability space. Since D(P) is basically the same

probability space as P, we say that D is a decoration and we refer to D(P) as the decoration
of P according to D. Decoration is a key concept in the semantics of stochastic automata.

A.2. Borel spaces and probability measures

Borel algebras are an important class of o-algebras. In particular we are interested in the
Borel algebras defined on a Cartesian product of the real numbers.

Definition 39. For every k € {1,...,n}, let I = (ax, by] with a, by € IR U {—00,00}. The interval
(a,00] is taken to be (a,00).

The set I =1 x ... x I, € IR" is called a rectangle.

Let Z be the set of all rectangles. The Borel algebra of subsets of IR”, denoted by B(IR"), is
the smallest o-algebra containing Z. The measurable space (IR”, B(IR™)) is called a Borel space.

We only consider probability spaces that are isomorphic to some Borel space defined on a
real hyperspace (as in Definition 39) whose coordinates are determined by independent random
variables. The class of probability measures used is defined by the following theorem [45, 11-§3].

Theorem 40. For i € {l,...,n}, let F; be a distribution function. There is a unique probability
measure P on (IR", BAR™)) such that

n

P((a1,b1l, . . ., (an, b)) = 1_[(Fi(bi) — Fi(ai)

i=l

4 Formally speaking, (€2, F) should be a locally compact Hausdorff space (see e.g. [40]). In this article, we only
use this kind of measurable spaces.

30 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

with —oo < a; < bj < oo, for i € {l,...,n} and where [|;_,d; is a shorthand notation for dy - d> -
o d,.

As a consequence of this theorem we uniquely identify by R(Fi,...,F,) the probability space
(IR", B(R™), P,) where B(IR") is the Borel algebra on IR” and P, is the unique probability mea-
sure obtained as in Theorem 40 from a given family of distribution functions F,...,Fy,. In
particular, if » = 0, R() is the trivial probability space ({@},{, {@}},Py) with Py in the obvious
way.

A.3. Random variables

Definition 41. Let (2, F) be a measurable space and (IR, B(IR)) the Borel space on the real line.
A measurable function X : Q — IR is called a random variable. If P is a probability measure

on (2, F), the probability measure Py ©fpyx -t on (IR, B(IR)) is the probability distribution
of X. The function Fy, defined by

Fy @ ¥ Py (—00,d]) = P({a | X (a) < d})

with d € IR, is the distribution function of X. The support set of Fy is defined by supp(Fy) &
supp(Py).

Definition 42. Let P = (2, F,P) be a probability space. Random variables Xj,...,X, on P are
independent if for all B; € BAR), i=1,...,n:

P (ﬂXi_l(B,-)> =[1Px,®.
i=l i=l

Proposition 43. Let X1,...,X,, (n > 1) be independent random variables on (2, F,P) where X; has
distribution function Fyx., and d € R.

(1) The distribution function Y = max(Xy,...,X,) is given by:

n
Fy(d) = [[Fx(@.
i=1
(2) The distribution function of Z = min(Xy,...,X,) is given by:

Fz(d) =1-] [0 = Fx ().

i=1

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 31
B. Auxiliary lemma for the proof of ~; < ~,

Let max,(C) = max{v(x) | x € C}. In particular, we assume max & = 0.

Lemma 44. Let Rg be a symbolic bisimulation on a given stochastic automaton SA. Let R, be
the symmetric closure of R, UR,, where

R, = {((s1,01), (s2,02)) | (51,52, SR) € Rg, (B.)
AY(C1,C2) € SR — (82(k(s1)) x 8(k(s2))).
max,, (C) = max,,(C2) V (max,, (C1) < 0 Amax,,(C2) <0) }

Ry = {([s1,v1].[s2,v2]) | (51,52, SR) € Rg, (B.2)
AY(C1,C2) € SR . maxy, (C)) = max,, (C2)
V(CiNk(s) = @ = Cy Nk(s2) A maxy (C) < 0Amax,,(Cy) <0) }.
Then R, is a probabilistic bisimulation up to ~, in PTS,(SA).

Proof. By definition, R, is symmetric. Thus, we directly proceed to prove the transfer properties
in Definition 9. We only prove the straight cases. The symmetric ones follow in a similar way.

1. Let (_(ﬁl_;vl) ,(52,12)) € R,. Then (s1,s2, SR) € Rg satisfies the requirements in (B.1).
Let «(s;) = (x],...,x}) for i € {1,2}. By Definition 16 (rule Prob), for i € {1,2},

T (si,0i) = Dy (R(E, ..., Fy) = (Q, Fi, B)

Let N be the number of pairs (Ci, C») € SR such that C; C «(s1) (or equivalently Cy C k(s2)).

Let (CII,C%), e (Cfv ,Cév) be those tuples. Because SR is a synchronisation relation and sat-
isfies condition 1(ii) of Definition 25, k(s;) = |Ji_,; CF and Cl,...,CN are pairwise disjoint. As
a consequence, we may assume that, for all £ € {l,...,N},
ch = ' b X pE
(121 my)+1 lzlm’l

. N .
where #CF = m! (and n; = Y m}).
=1
For (dy,...,dy) € RY define

def

[d,....dv]s = {[siv] | Ve e{l,...,N}. maXU(Clk) =dr AVx ¢ k(s;). v(x) = vi(x)}

Then, we have the following claim whose proof can be found later.

32 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

Claim 44.1.
L If [s,v) € di,....dyvTo and [, V] € [dy,....dy]3, then ([s,v],[s/,v]) € (~p URo)*.
2. For i € (1,2}, if [s,v], [, V] € [dh,....dN 13, then ([s,v],[s/,v]) € (~p URp)*.

From this claim it follows that for any (di,...,dy) € RY and any [s,v] € [d], .. .,dN]‘Z{ U [d,
dN]Uzs

[dla e 7dN]f,ll U [dla e :dN]fé g [[Sa U]](NPURU)* € [8 X V]/(Np URO)*a

where [[s, v]] (~URy)* is the equivalence class of [s,v] induced by the equivalence relation (~,
P 0

UR,)*. As a consequence, there is a unique D; C RY such that

[[Sa U]]('\’pURo)* = (U(dla"'adN)eDi\ [dlz et dN]le U [dla R dN];‘%)
U ([0 1] e — RVES VIR,

where [RV]S = U{[d),...,dy]S | (di,...,dy) € RV},
Let § €[S x VI/(~p URy)* and let D = {Dy | [[s,v]] . iz« € US}. Then,

uS = (UD/ED Udr.ayyepdis - - odn Ty U [dl,...,dN];ig) U (US — IRV} UTIRMT2))

Therefore, we can state that there is a unique set D € IRV (taking D = UD) such that for
i€{l,2},

(;NUS) = U(dl,...,dN)eD[dlﬂ cee ’dN]f;é (B-3)

For i € {1,2}, define M; : R" — IR" by

def
M(d],,d z,d ’+1"’dm’+m ceey (ZN lmi)+1, 7d}’ll) =

(max{dl,. ,d } max{d i1 ,dm,+m } max{d(zzv Uiy odp})

where #CF = mt, for k € {1,...,N} (and n; = Z]lv:l mh).
The proof of the following claim can be found on page 35.

Claim 44.2. For all (d,...,dy) € RY, and any i € {1,2} :
[dy,....dyI = (DS o M)(d,....dy)

Forie{l,2} and k € {l,...,N}, let max(Ck) be the random variable that maximizes all ran-
dom variables in Ck Its dlstrlbutlon function is given by

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

33
Froaxcly® = Prob(max(C{‘) <9
= Prob | (x,_, <HOA--AG, <0
(3 m+1 m
=1 =1
=TI Prob|x, , <t| = I/ F o
(X mp)+h : Zlm,>+h

Therefore, because of condition 1(iii) of symbolic bisimulation (see Definition 25), F, max(Cl) =

Fmax(cg) for all £ € {1,...,N}. Hence
R(Fmax(Cll)’ ce Fmdx(CN)) - R(F ax(Cé)’ ce n’ldX(C2))

Notice that M(R(F,,. . x,) = R(F. max(Cly -+ Fmax(CN) for i € {1,2} is measurable.

As a consequence, 1f P is the probability measure of R(max(Cl)? - Fmax(CN)) (and hence
also of R(F,, max(C),...,Fmax(cgv))), and P/ is the probability measure of R(F,..., x,) for i e
{12},

P="P oM™’ (B4)

For i € {1,2}, we calculate:

wu((sis vi) ,US)

= P;(2; NUS) (Def. of w)

=P (Ua... dN)ED[dl,...,dN]ia) (by (B.3))

= P((Dy o M~ Ydi,...,dv)) (Claim 44.2)

= (P o (D) H((D} o M7 (d1,....dy)) (Def. of Py

=B oM Ndy....dy) (D) 'oDy =id since Dl is injective)

= Pd,,...,dy) (by (B.4)).

Therefore, w((sy,v1),US) = u((s2,v2),US), which concludes this part of the proof.
2. Let ([s1,v1],[s2,v2]) € R, and suppose that [sy, v1] N (s{v1 — d). Then, by rule Open in
*
Definition 16, s; a—C‘>s{ and expd(vl,Cl*) (e, Vx € Cl*. (v1 — d)(x) <0). Since (s1,52,SR) €
Rg, by item (2) in Definition 25,
a,C;r

82 —»—s'z.

(B.5)

34 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38
By Definition 23, Cl-* C Rel(s;). From this and items 1(i) and 2(i) in Definition 25, there is a
set of pairs (C[,Cl),...,(CN,CY) € SR, for some N > 0, such that Cl.* =, Ck, with i = 1,2.

Due to conditions in (B.2), it follows that, for all £ € {1,...,N}, either maxvl(Cf‘) = maxvz(Cf)

or maxvl(Clk) < 0 and maxvz(Cé‘) < 0. As a consequence maxvz(Cz*) < d. That is, for all x € C; ,
v(x) < d, and hence

VyeCy. n—d)(») <0 (e, expy(v2,Cy)). (B.6)

From (B.5), (B.6), and rule Open, it follows that [s,v;] @, (sh,v2 — d).
It remains to prove that ((s},v| —d),(sh,v2 — d)) € Ry, which reduces to prove the condi-

tions in (B.1). Because of item 2(ii) in Definition 25, (s],s5, SR /) € Rg for some SR ' satisfying
forward compatibility:

[(CL,C2) € SR | (C1NFV(s)) U (C2 NFV(sh)) # @) — (50(01*) x 50(02*))
- {(C{, C)) € SR | (C]NFv(s))) U (C, NFu(sh)) # @} - (@(cl*) x 50(02*)).

We consider now two cases. First, let (C;, ;) € SR g ((@(Cl*) x @(Cz*)RV
(8 (k(s)) x 8(k(s5)))). Then, for i e (1,2}, C; € Rel(s) — «(s;) = Fv(s)). Therefore, (C1,C3) €

{(C{,cp e SR | (C] NFv(s)) U (C) NFv(sh)) + @} — (2(C) x £(C3)), and hence (C1,C2) €

SR . As a consequence
maxy, (C1) = max,, (C2) v (maxy, (C1) <0 A max,,(C2) <0),
because of (B.2). Now, it is immediate that
maxy, —q)(C1) = max,—¢(C2) V (maxy,—¢(C1) <0 A maxg,—¢(C2) <0). (B.7)

Second, let (C}, C») € SR N (@(Cl*) X @(C;)), which implies that exp,(v1, C1) and exp,(v2, C2).
Therefore

maxy—q) (C1) <0 A maxg,—q4(C2) <O0. (B.8)
From (B.7) and (B.8), for all (Ci,C>) € SR’ — (8 (x(s))) x 8 (k(s5))),
maxy,—q)(C1) = max(y,—q(C2) vV (maxe—4(C1) <0 A maxe,—q4(C2) <0).

Since (s, s5, SR 'y € Rg, (B) is satisfied by ((s},v1 —d), (sh,vo —d)) €Ry. O

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

35
Proof [of Claim 44.1].
1. We show that ([s,v],[s/,v]) € R,, which implies Claim 44.1(1). Let [s,v] € [d,...,dy];, and
[s',v'] € [d1,....,dNTs3. Then

s=s1, §=s, Vkell,...,N}L maXU(C{‘) =d, = maxvf(Cé‘),
Vx ¢ k(s1). v(x) = v1(x) and Vx ¢ k(s2). v'(x) = v(x)

Recall that ((s1,v1), (s2,12)) € R, satisfies the requirements in (B.1). In particular (s;,s2, SR) €
Rg. So, it suffices to show that ([s,v], [s/ U]) satisfies the requirements in (B.2). First, (s,s’, SR) =
(51,52, SR) € Rg.

Next, take (C1, Cr) € SR. If C1 N«k(s1) # @, then C; C k(s1) and Cy C k(sp). Therefore there

exists k € {1,...,N} s.t. (C,Cr) = (C{‘,Cé‘) from which it follows that max,(C;) = max,(C3).
If CiN«k(s)) = @, then also C> N«k(sy) = @ and hence

max,(C) = max{v(x) | x € C;} = max{vi(x) | x € C1} = max,, (Cy)

Similarly, max,, (C2) = max,, (C>). Because ((s1,v1) , (s2,02)) € R, satisfies the requirements in (B.1),

max,(C)) = max,(Cr) vV (max,(Cy) < 0 Amax,(Cy) <0).

This completes the proof that ([s,], [s/ U]) € R, and hence this part of the claim.
2. Let [s,v],[s,v'] € [dy,...,dn]s. Notice that [dy,...,dy]: is never empty. Then there exists
[s”, v”] € [d,...,dy];3. Due to Claim 44.1(1) ([s, v],[s”,v”]) € (~p URy)* and ([s 1/] , [s”, v”]) €
(~p UR,)*. By symmetry and transitivity ([s,], [s/ U]) € (~p URy*. O
Proof [of Claim 44.2).

[s,v] € [d],...,dN]fjl’,
& (Def. of [dl,...,dN],ill'_)

s=si A Vke{l,...,N}. max,(C5) =dp A Vx ¢ K(s). v(x) = v;(x)
<= (Def. of max,)

S=5 N
i i _
Vke{l,...,N}. max{v(x(z,;:_llm;)ﬂ),...,v(lelem?)} =d; A
Vx ¢ k(sj). v(x) = v;i(x)
<= (Def. of M)
S=5 AN
M;(v(x}), . . .,u(x;'n,l.), o o(x
Vx ¢ k(s;). v(x) = v;i(x)
< (Def. of ijj)

DZi(U(xi)a] v(x;ntl')a R U(XI(Z]]V:_ll m$)+1)9] U(x}l’[i)) = [Sa U] A

N) 0)) = (@idh) A

36 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38
(o i i i) =
M(U(‘xl)ﬁ R U(xmll)’ R U(X(Z][v:]lm’))‘*‘l)’ R U(xni)) (dlv s adN)
<= (Def. of o and _1)
: -1
[s,0] € (Diio]lli)(d,...,dy). O

C. Auxiliary lemma for the proof of ~, C ~,

Lemma 45. Let SA be a stochastic automaton and let PTS.(SA) and PTS,(SA) be its closed and
open behaviour, respectively. The two following statements are equivalent:

(1) [s.0] < (5.0)
(2) [s,] ﬂ>o (s',v) and for all d' € [0,d), b € A, [s,1] ﬁ@b(d) .

where —. and —, are the transition relations of PTS.(SA) and PTS,(SA), respectively.

Proof (1. = 2.). By definition of rules Closed and Open, it immediately follows that [s, v] ﬂc

(s',v') implies [s, v] ﬂo (s",0).
Moreover, because of rule Closed, mpr,(s,v) holds, which implies that

Vd' € [0,d). —3s 2 . expy (v, C).

Therefore, by rule Open, for all d' € [0,d) and for all b e A, [s, 1] —%, .

(2. = 1.). Assume [s,0] ﬂn, (s',v'). By contradiction, suppose [s,v] %C. By rule Open,

s =25 ¢ and exp, (v, C). By Closed, it must therefore be the case that mpr,(s,v) is not valid.
As a consequence,

3d' € [0,d),b e A, C' CC. s and expy (v, C')

!

By Open, this implies that 3d’ € [0,d),b € A. [s,0] ﬂ)o which contradicts item 2. [

References

[1] R. Alur, C. Courcoubetis, D. Dill, Model-checking for probabilistic real-time systems, in: J. Leach Albert, B.
Monien, M. Rodriguez (Eds.), Automata, Languages and Programming (ICALP), Lecture Notes in Computer
Science, vol. 510, Springer, 1991, pp. 113-126.

[2] R. Alur, D. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183-235.

[3] C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking of continuous-time Markov
chains, in: J.C.M. Baeten, S. Mauw (Eds.), Concurrency Theory (CONCUR), Lecture Notes in Computer
Science, vol. 1664, Springer, 1999, pp. 146-161.

[4] A. Bouajjani, S. Tripakis, S. Yovine, On-the-fly symbolic model-checking for real-time systems, in: 18th IEEE
Real-Time Systems Symposium (RTSS), IEEE CS Press, Silver Spring, MD, 1997, pp. 25-34.

P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38 37

[5] M. Bravetti, Specification and Analysis of Stochastic Real-Time Systems, PhD thesis, Universita di Bologna,
Padova, Venezia, 2002.

[6] M. Bravetti, P.R. D’Argenio, Tutte le algebre insiemi: concepts, discussions and relations of stochastic process
algebras with general distributions, in: C. Baier (Ed.), et al., Validation of Stochastic Systems, Lecture Notes
in Computer Science, vol. 2925, Springer, 2004, pp. 44-89.

[7] M. Bravetti, R. Gorrieri, The theory of interactive generalized semi-Markov processes, Theor. Comput. Sci.
282 (1) (2002) 5-32.

[8] C.G. Cassandras, Discrete Event Systems. Modeling and Performance Analysis, Aksen Associates, Irwin, 1993.

[9] S. Cattani, R. Segala, M.Z. Kwiatkowska, G. Norman, Stochastic transition systems for continuous state
spaces and non-determinism, in: V. Sassone (Ed.), Foundations of Software Science and Computation Struc-
tures (FOSSACS), Lecture Notes in Computer Science, 3441, Springer, 2005, pp. 125-139.

[10] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.

[11] P.R. D’Argenio, Algebras and Automata for Timed and Stochastic Systems, PhD thesis, University of Twente,
1999.

[12] P.R. D’Argenio, A compositional translation of stochastic automata into timed automata, CTIT Technical
Report CTIT 00-08, University of Twente, 2000.

[13] P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part II: Process algebra, Inform. Comput. 203
(2005) 39-74.

[14] P.R. D’Argenio, J.-P. Katoen, E. Brinksma, Specification and analysis of soft real-time systems: quantity and
quality, in: 20th IEEE Real-Time Systems Symposium (RTSS), IEEE CS Press, Silver Spring, MD, 1999, pp.
104-114.

[15] J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for labelled Markov processes, Inform. Comput. 179
(2) (2002) 163-193.

[16] A. Giacalone, C.-C. Jou, S.A. Smolka, Algebraic reasoning for probabilistic concurrent systems, in: M.
Broy, C.B. Jones (Eds.), IFIP Working Conference on Programming Concepts and Methods (PROCOMET),
North-Holland, Amsterdam, 1990, pp. 443-458.

[17] RJ. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic pro-
cesses, Inform. Comput. 121 (1995) 59-80.

[18] RJ. van Glabbeek, F.W. Vaandrager, Petri net models for algebraic theories of concurrency, in: JW. de
Bakker, A. Nijman, P.C. Treleaven (Eds.), Parallel Architectures and Languages Europe (PARLE), Lecture
Notes in Computer Science, vol. 259, 1987, pp. 224-243.

[19] P.W. Glynn, A GSMP formalism for discrete event simulation, Proc. IEEE 77 (1) (1989) 14-23.

[20] S. Gnesi, D. Latella, M. Massink, A stochastic extension of a behavioural subset of UML statechart diagrams,
in: Symp. on High-Assurance Systems Engineering (HASE), IEEE CS Press, Silver Spring, MD, 2000, pp.
55-64.

[21] H.A. Hansson, Time and Probability in Formal Design of Distributed Systems, PhD thesis, Uppsala Univer-
sity, 1991.

[22] H.A. Hansson, B. Jonsson, A calculus for communicating systems with time and probabilities, in: 11th IEEE
Real-Time Systems Symposium (RTSS), IEEE CS Press, Silver Spring, MD, 1990, pp. 278-287.

[23] P.G. Harrison, N.M. Patel, Performance Modelling of Communication Networks and Computer Architectures,
Addison-Wesley, Reading, MA, 1992.

[24] P.G. Harrison, B. Strulo, Stochastic process algebra for discrete event simulation, in: F. Bacelli, A. Jean-Marie,
I. Mitrani (Eds.), Quantitative Methods in Parallel Systems, Esprit Basic Research Series, Springer, 1995, pp.
18-37.

[25] P.G. Harrison, B. Strulo, SpapEs: Stochastic process algebra for discrete event simulation, J. Logic Comput.
10 (1) (2000) 3-42.

[26] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Inform.
Comput. 111 (1994) 193-244.

[27] H. Hermanns, Interactive Markov Chains and The Quest for Quantified Quality, Lecture Notes in Computer
Science, Springer, 2002.

[28] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley, New York, 1991.

38 P.R. D’Argenio, J.-P. Katoen | Information and Computation 203 (2005) 1-38

[29] D.N. Jansen, H. Hermanns, J.-P. Katoen, A QoS-oriented extension of UML statecharts, in: P. Stevens, J.
Whittle (Eds.), Unified Modeling Language (UML), Lecture Notes in Computer Science, vol. 2863, 2003, pp.
76-92.

[30] H.E. Jensen, Model checking probabilistic real-time systems, in: B. Bjerner, M. Larsson, B. Nordstrom (Eds.),
7th Nordic Workshop on Programming Theory, Report 86, Chalmers University of Technology, 1996, pp.
247-261.

[31] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time systems with prob-
ability distributions, Theor. Comput. Sci. 282 (1) (2002) 101-150.

[32] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Verifying quantitative properties of continuous prob-
abilistic timed automata, in: C. Palamidessi (Ed.), Concurrency Theory, Lecture Notes in Computer Science,
vol. 1877, Springer, 2000, pp. 123-137.

[33] S. Lang, Real and Functional Analysis, Graduate Texts in Mathematics, Springer, 1993.

[34] K.G. Larsen, P. Pettersson, W. Yi, Compositional and symbolic model-checking for real-time systems, in: 16th
IEEE Real-Time Systems Symposium (RTSS), IEEE CS Press, Silver Spring, MD, 1995, pp. 76-87.

[35] K.G. Larsen, P. Pettersson, W. Yi, UpPAAL in a nutshell, J. Software Tools Technol. Transfer 1 (1/2) (1997)
134-152.

[36] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. Comput. 94 (1991) 1-28.

[37] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[38] M.F. Neuts, Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach, The Johns Hopkins
University Press, Baltimore, MD, 1981.

[39] A. Pnueli, L.D. Zuck, Probabilistic verification, Inform. Comput. 103 (1993) 1-29.

[40] W. Rudin, Real and Complex Analysis, Series in Higher Mathematics, McGraw-Hill, 1974.

[41] R. Schassberger, Insensitivity of steady-state distributions of GSMPs, Ann. Prob. 5 (1977) 87-89.

[42] R. Segala, Modeling and Verification of Randomized Distributed Real-Time Systems, PhD thesis, MIT, 1995.

[43] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, Nordic J. Comput. 2 (2) (1995)
250-273.

[44] G.S. Shedler, Regenerative Stochastic Simulation, Academic Press, 1993.

[45] AN. Shiryaev, Probability, Graduate Texts in Mathematics, Springer, 1996.

[46] B. Strulo, Process Algebra for Discrete Event Simulation, PhD thesis, Imperial College, 1993.

[47] M.Y. Vardi, Automatic verification of probabilistic concurrent finite state programs, in: 26th Symp. on Foun-
dations of Computer Science (FOCS), IEEE CS Press, Silver Spring, MD, 1985, pp. 327-338.

[48] E.P. de Vink, JJ.M.M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach,
Theor. Comput. Sci. 221 (1-2) (1999) 271-293.

[49] W. Whitt, Continuity of generalized semi-Markov processes, Math. Oper. Res. 5 (1980) 494-501.

[50] H.L.S. Younes, R.G. Simmons, Probability verification of discrete event systems using acceptance sampling, in:
E. Brinksma, K.G. Larsen (Eds.), Computer Aided Verification (CAV), Lecture Notes in Computer Science,
vol. 2404, Springer, 2002, pp. 223-236.

[51] S. Yovine, Kronos: a verification tool for real-time systems, J. Software Tools Technol. Transfer 1 (1/2) (1997)
123-133.

