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Abstract. Compositional reasoning is typically based on assume-gua-
rantee reasoning principles, which consider each component separately
and take into account assumptions about the context of the component.
This paper presents a combination of the assume-guarantee paradigm
and ioco, a formal conformance relation for model-based testing that
works on input-output transition systems (IOTS). We show that, un-
der certain restrictions, assume-guarantee reasoning can be applied in
the ioco context, enabling to check ioco-conformance by testing com-
ponents’ system separately. We improve on previous results, where spec-
ifications are required to be given as components, allowing the specifica-
tions to be complete systems. Moreover, we prove that assume-guarantee
reasoning can also be applied even when hiding internal communication
between components.

1 Introduction

Conformance testing tries to identify if a system under test (known as SUT)
behaves as expected. We consider a black-box conformance testing framework to
test components of a system, where both the components and their specifications
are modeled as input-output transition systems (IOTS), which formalize system
descriptions that interact with their environment by receiving inputs and o↵ering
outputs. An IOTS that has the input set I and the output set U is denoted
as IOTS(I, U). The ioco input output conformance relation asserts when an
implementation behaves as expected by a given specification, both modeled by
two IOTS(I, U); ioco checks the inclusion of specification’ Straces (that is,
traces with information about quiescence); in the presence of non-determinism,
ioco can distinguish systems that are indistinguishable under trace inclusion.

A previous approach [6] studies compositional properties of ioco. Given two
pairs of input-enabled (defined below) systems i

1

, s
1

as IOTS(I
1

, U
1

) and i
2

, s
2

as IOTS(I
2

, U
2

) the following compositional rule is proved: if i
1

ioco s
1

and i
2

ioco s
2

hold then i
1

||i
2

ioco s
1

||s
2

holds. In this previous framework the global
specification is given as a composition of two systems (s

1

||s
2

) and required to be
input-enabled. However, we believe that it is often natural and easier to initially
write a global system specification as a single system (rather than to decompose
it into subsystems s

1

and s
2

). Also, it is often the case that components conform
to their specifications only in specific contexts (or environments). We thus solve
the following problem: is it possible to use formal testing in a compositional
way, using a global specification and taking into account assumptions about the
environments in which the components are supposed to operate?
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We combine ioco with assume-guarantee reasoning, a “divide-and-conquer”
approach that infers global system properties by checking individual components
in isolation, under environment assumptions [2–4]. Assuming A, we prove that:

i
1

||A ioco S ^ i
2

ioco A
���������������

i
1

||i
2

ioco S
As a consequence, if A is provided we can test in isolation components (which

may be at di↵erent stages of development and possibly written by di↵erent
developer teams), having a specification of the overall system. Moreover, we
prove that if the communication between the systems is hidden, a similar result
also holds:(hideV in i

1

||A) ioco S and i
2

ioco A then (hide V in i
1

||i
2

) iocoS.

2 The ioco testing relation & composition in IOTS

This section recalls same aspects of the ioco theory, for more details see [5].
An input-output transition system (IOTS) is a tuple hQ, q0, L, T i, where:

Q is a countable, non-empty set of states, with q0 2 Q the initial state. L is a
countable set of labels, partitioned into input (I) and output (U) actions, with
I \ U = ; and I [ U = L. T ✓ (Q⇥ (L [ {⌧}) ⇥Q) is the transition relation.

We denote the class of all labeled transition systems over I and U by IOTS(I, U).
We use a special label ⌧ 62 L to denote internal actions. For an arbitrary L0 ✓ L,
we use L0

⌧

as a shorthand for L0 [ {⌧}. For a system p, we write Q
p

, L
p

, and

so on to denote the components of p. We write q
µ! q0 when (q, µ, q0) 2 T .

We use “?” and “!” before a label to denote whether it is an input or output
action. A state that cannot perform an internal action is called stable, whereas
one that cannot do an output or internal action is called quiescent. We use the
symbol � (with � 62 L

⌧

) to represent quiescence. For an arbitrary L0 ✓ L
⌧

, we
use L0

�

as shorthands for L0 [ {�}. An IOTS is called strongly convergent if it
does not have infinite ⌧ -labeled sequence. The set of all traces over L0 (with
L0 ✓ L) is denoted by L0⇤; a trace in L0⇤ is denoted by �, with ✏ denoting
the empty sequence. If �

1

,�
2

2 L0⇤, then �
1

· �
2

is the concatenation of �
1

and �
2

. We use the standard notation with single and double arrows for traces:

q
µ

1

···µn�! q0 denotes q
µ

1! · · · µn! q0, q
✏) q0 denotes q

⌧ ···⌧�! q0 and q
µ

1

···µn=) q0 denotes
q

✏)µ

1! ✏) · · · ✏)µn! ✏) q0, with µ
i

2 L0
⌧�

. We write q
µ) if there exists a q0 such that

q
µ) q0. An IOTS(I, U) system p = hQ, q0, L, T i is called input-enabled (denoted

IOTS–ie) if all inputs are enabled in all states, i.e. 8 q 2 Q : 8µ 2 I : q
µ). Fi-

nally, for I 0 ✓ I
p

and 8 q 2 Q : 8µ 2 I 0 : q
µ) we say that p is input-enabled with

respect to I 0, denoted p-ie(I 0). Moreover, as in typical process algebra semantics,
we sometimes use a transition system and its initial state interchangeably.

Let p be an IOTS(I, U), Q0 ✓ Q
p

a subset of states in p, q 2 Q
p

and

� 2 L⇤
�

, then: q after � , {q0|q �) q0}, out(q) , {µ 2 U |q µ!} [ {�|q �!},
out(Q0) , S

{out(q)|q 2 Q0} and Straces(p) , {� 2 L⇤
�

|q0

p

�)}.

Definition 1. Given implementation i 2 IOTS(I, U)-ie and specification S 2
IOTS(I, U): i ioco S i↵ 8 � 2 Straces(S) : out(i after �) ✓ out(S after �).
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Restricted ioco Since the ioco-relation gives implementation’s freedom on
inputs that do not appear in specifications, it is natural to ask if ioco holds
when the specification inputs are included in the implementation inputs.

Definition 2. Let p = hQ
p

, q0

p

, L
p

, T
p

i be an IOTS(I
p

, U
p

) with L
p

= I
p

[ U
p

,
I ✓ I

p

and U ✓ U
p

we define the restriction of p in (I, U), denoted by R-p(I, U),
as the IOTS defined by Q = Q

p

, q0 = q0

p

, L = I[U and T = T
p

\(Q
p

⇥L
⌧

⇥Q
p

).

In the case that the implementation actions are a subset of the specification
actions, the ioco relation restricted to the specification actions follows easily
(In the statement of the lemma below, we slightly abuse notation w.l.o.g. and
assume that ioco allows inputs of the specification to be included, and not
exactly equal, to the inputs of the implementation).

Lemma 1. Let i
1

be an IOTS(I
i

1

, U
i

1

) and s be a IOTS(I
s

, U
s

) with I
s

✓ I
i

1

and U
i

1

✓ U
s

. Let i
2

be the restriction of i
1

in (I
s

, U
s

), i
2

= R-i
1

(I
s

, U
s

), with
i
2

-ie(I
s

) then: if i
2

ioco s then i
1

ioco s

One of the advantages of the ioco relation is that it gives freedom to imple-
mentation behaviors that are not specified by the specification[5]. As a result, in
Lemma 1, we use this liberty to test implementations with a wider input actions
set than the ones specified by the specification. Also, we relax the input-enabled
assumption to the subset of specification’s input actions.

2.1 Composition in IOTS
The integration of components can be modeled algebraically by putting the
components in parallel while synchronizing their common actions. The synchro-
nization of processes p

1

and p
2

is denoted p
1

||p
2

.

Definition 3. Let p
1

= hQ
1

, q0

1

, L
1

, T
1

i and p
2

= hQ
2

, q0

2

, L
2

, T
2

i be IOTS’
with I

1

\ I
2

= U
1

\ U
2

= ; then p
1

||p
2

= hQ, q0

1

||q0

2

, L, T i, is defined as:
Q = {q

1

||q
2

| q
1

2 Q
1

, q
2

2 Q
2

}, I = (I
1

\ U
2

) [ (I
2

\ U
1

), U = U
1

[ U
2

and T is the minimal set satisfying the following inference rules (µ 2 L
⌧

):

q
1

µ! q0
1

, µ 62 L
2

` q
1

||q
2

µ! q0
1

||q
2

; q
1

?µ! q0
1

, q
2

!µ! q0
2

, µ 62 ⌧ ` q
1

||q
2

!µ! q0
1

||q0
2

q
1

!µ! q0
1

, q
2

?µ! q0
2

, µ 62 ⌧ ` q
1

||q
2

!µ! q0
1

|| q0
2

; q
2

µ! q0
2

, µ 62 L
1

` q
1

||q
2

µ! q
1

||q0
2

Here, inputs ?a in one system are matched with outputs !a in the other
system, the result being an output !a in their parallel composition. Given two
systems p

1

and p
2

, we use Share(p
1

, p
2

) to denote (I
1

\ U
2

) [ (I
2

\ U
1

).
Note that Definition 3 puts constraints on input and output sets. So, parallel

composition may give rise to IOTS’ that are not strongly convergent, even if their
components are. Thus, we implicitly restrict to cases where parallel composition
is strongly convergent. Moreover, we only use binary parallel composition.

In Figure 1, on the left, we present three IOTS representing a cash machine.
We represent the initial state with double circle. First, on the left hand side we
present a device that takes care of the card received by our cash machine. The
CARD device receives a card, announces that it has the card, and expects for an
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OK answer or an error answer. If an OK answer arrives it gives back the card.
If an error answer arrives the CARD device keeps the card, assuming something
went wrong with the pin so the device retains the card.

Second, in the middle, we present a PIN device. It starts receiving the an-
nouncement that there is a card in the machine, then it expects a pin number. If
the pin is correct, the device gives money and sends an OK acknowledgement. If
the pin is incorrect, the device sends an error acknowledgement and an specific
error stating that the pin was not correct.

Third, the CARD-PIN machine is depicted, that is the parallel composition
of the CARD device and PIN device after the synchronization between them.
In the CARD-PIN machine we see that the system receives a card and a pin
number, then two things can happen. Either the system gives money and the
card back (this is the case when the pin number was correct), or the system
retains the card and gives an error indication that the pin was not correct.

3 Assume-guarantee reasoning with ioco

In this section we consider the following assume-guarantee rule: if i
1

||A ioco
S ^ i

2

ioco A holds then i
1

||i
2

ioco S holds. The rule says that if, under
assumption A, i

1

conforms with S and i
2

conforms A, then we can be sure that
the parallel composition i

1

||i
2

conforms w.r.t. S. We show (in Theorem 1 below)
that under certain restrictions, this rule is sound. Therefore, we can obtain i

1

||i
2

ioco S by checking i
1

||A ioco S and i
2

ioco A separately.
There are two complications in applying ioco in assume-guarantee reasoning.

Firstly, quiescent states are not preserved by composition. Secondly, ioco allows
implementation freedom for inputs that are not specified. To apply ioco we need
to assume that implementations are input-enabled with respect to specification
inputs. Therefore, to assert that i

1

||i
2

ioco S, we also assume that i
1

||i
2

is input-
enabled with respect to S’s inputs. We prove that, for an input-enabled system
A such that i

1

||A ioco S and i
2

ioco A, then i
1

||i
2

is ioco S. Note that we
improve on previous result [6], and do not require S to be input-enabled.

Definition 4. Let µ 2 L
�

, � 2 L⇤
�

and L0 ✓ L
�

, then ✏dL0 = ✏ and (µ · �)dL0 =
�dL0 if µ 62 L0 or µ · (�dL0) if µ 2 L0.

In the proof of Theorem 1 we use the following result from [6]: Let p
1

be a
IOTS(I

1

, U
1

) and p
2

be a IOTS(I
2

, U
2

) with I
p

1

\ I
p

2

= U
p

1

\ U
p

2

= ; and
L = I[U where I = I

1

[I
2

/Share(p
1

, p
2

)^U = U
1

[U
2

, r 2 Q
p

1

||p
2

,� be in L⇤
�

,

then: p
1

||p
2

�) r i↵ 9 p0
1

, p0
2

: p
1

�dL�
p
1=) p0

1

^ p
2

�dL�
p
2=) p0

2

^ r = p0
1

||p0
2

. Basically,
if p is the parallel composition of p

1

and p
2

(p = p
1

||p
2

) under some restriction,
for all reachable states r in p it is possible to find a state r

1

in p
1

and a state r
2

in p
2

such that r = r
1

||r
2

. The inverse also holds (see [6]).

Theorem 1. Let i
1

be an IOTS(I
1

, U
1

)–ie(I
1

), A and i
2

be IOTS(I
2

, U
2

)–ie(I
2

)
and S be an IOTS(I

3

, U
3

). With I
1

\ I
2

= U
1

\U
2

= ; and U
1

[U
2

✓ U
3

^ I
3

✓
I
1

[ I
2

then: if i
1

||A ioco S ^ i
2

ioco A hold then i
1

||i
2

ioco S holds.
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Theorem 1 allows us to apply ioco not only to composed systems but also to
specifications given as a complete system knowing an assumption about a sub-
part of the system. Compared to the previous result, the new assume-guarantee
approach assumes that we can have an assumption on one of the components.

4 Hiding in assume-guarantee reasoning with ioco

Definition 5. Let p = hQ, q0, L, T i be an IOTS with L = I [ U and V ✓ U
then we define hide V in p as a new IOTS with hQ0, q00, L0, T 0i where: Q0 = Q,
q00 = q0, labs0 = I [ (U\V ) and T 0 is the minimal set satisfying the following

inference rules, with µ 2 L
⌧

, q
1

, q
2

2 Q and q0
1

, q0
2

2 Q0: q
1

µ! q
2

, µ 62 V ` q0
1

µ!
q0
2

and q
1

µ! q
2

, µ 2 V ` q0
1

⌧! q0
2

.

Again, note that Definition 5 gives constraints on the input and output sets.
Therefore, hiding may gives rise to IOTS’ that are not strongly convergent, even
if their components are. So, we implicitly restrict ourselves to cases where hiding
is strongly convergent.

On the right hand side in Figure 1 we show the H(CARD-PIN) machine,
i.e. the parallel composition of the CARD and PIN machine after hiding the
synchronization actions between them.

An immediate question, given from the results from Section 3, is the following:
Is it possible to hide the internal communication between components? The
answer is a�rmative, as shown in the next theorem.

Theorem 2. Let i
1

2 IOTS–ie(I
1

, U
1

), A, i
2

2 IOTS–ie(I
2

, U
2

) and further-
more S 2 IOTS(I

3

, U
3

), with I
1

\ I
2

= U
1

\ U
2

= ;. Let V ✓ Share(i
1

, i
2

) and
(U

1

[U
2

)\V ✓ U
3

^ V \U
3

= ; ^ I
3

✓ I
1

[ I
2

then: if ( hide V in i
1

||A) ioco
S and i

2

ioco A hold then ( hide V in i
1

||i
2

) ioco S holds.

This result enables us to test the system allowing to incorporate new in-
terfaces between components by only changing the assumption and leaving the
specification of the whole systems the way it was.

Recall the specification S of the cash machine from Figure 1(CARD-PIN).
There, we can insert a card, later a pin number, and obtain two answers from
the machine: positive or negative. In the case we obtain a positive answer, we
receive the money and the card. In the case we obtain a negative answer, we
only receive a message informing that the pin number is wrong.

Now suppose two companies are developing the internal components of this
cash machine; the two components interact as shown on the left of Figure 2. The
cash machine has two internal components (CARD and PIN), which interact
using the labels have-card, OK and err, but this is not specified in CARD-
PIN. So, to allow both companies to test each part separately, the system that
interacts with the CARD component is specified in A, shown in Figure 2.

Given one CARD implementation i
CARD

and one PIN i
PIN

, let V be the
internal communication s.t. V = {have-card,OK, err}. Using Theorem 2, it is
enough to prove that (hide V in i

CARD

||A) ioco S and i
PIN

ioco A, to establish
that (hide V in i

CARD

||i
PIN

) ioco S.
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Conclusions To the best of our knowledge, ours is the first application of
assume-guarantee with ioco. We plan to extend this work considering proba-
bilistic and realtime settings (e.g., the tioco timed testing relation [1]).
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Fig. 1. Parallel composition of CARD and PIN and their hiding communication
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Fig. 2. Left: Internal components of the cash machine from Figure 1(left). Right: The
assumption of the environment in which the CARD component is assumed to function
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