
On the verification of Probabilistic I/O Automata with
unspecified rates

∗

Sergio Giro
FaMAF, Universidad Nacional de Córdoba,

Argentina and CONICET

sgiro@famaf.unc.edu.ar

Pedro R. D’Argenio
FaMAF, Universidad Nacional de Córdoba,

Argentina and CONICET

dargenio@famaf.unc.edu.ar

ABSTRACT

We consider the Probabilistic I/O Automata framework, for
which we address the verification of reachability properties
in case the rates (also called delay parameters) are unspeci-
fied. We show that the problem of finding (or even approx-
imating) the supremum probability that a set of states is
reached is undecidable. However, we give an algorithm to
obtain a non-trivial over-estimation of this value. We ex-
plain why this over-estimation may result useful for many
systems. Finally, in order to compare our approach against
Markov Decision Processes, we study a simple protocol for
anonymous fair service. In this case, the over-estimation
computed over the PIOA gives a more realistic result than
the exact computation over the MDP.

Keywords

model checking, probabilistic automata, distributed systems

1. INTRODUCTION
Probabilistic I/O Automata (PIOA) are probabilistic state

machines introduced in [12] with the aim of providing a
framework for modelling asynchronous probabilistic systems
(for relevant results in this framework, see [10, 8, 11, 9]). In
this paper, we consider the verification of distributed prob-
abilistic systems, in which several entities evolve in an in-
dependent fashion and ocasionally exchange some informa-
tion. For such systems, we address the nondeterminism in-
troduced by the fact that the order in which entities ex-
ecute is not specified (we refer to this concept as the in-
terleaving nondeterminism). As in the PIOA setting, we do
not consider the internal nondeterminism introduced by the
existence of several enabled transitions in the same entity.
PIOA as in [12] are useful to model systems in which a rate

∗Supported by ANPCyT project PICT 26135 and CON-
ICET project PIP 6391. An extended version of this paper
(including proofs and pointers to PRISM code) can be found
at cs.famaf.unc.edu.ar/∼sgiro/GD09-sac.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8­12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978­1­60558­166­8/09/03 ...$5.00.

(called delay parameter in [12] and rate function in subse-
quent works, e.g. [9]) is known for each state in each entity.
Given the actual state in each entity, the rates are used to
calculate the probability that a given entity is the next one
to perform an action. Here, we address the verification of
systems in which the rates are not known beforehand and,
moreover, rates may vary during the course of execution.
Our formalism allows to specify separate entities, each one
having partial knowledge of the global state of the system.
This ability is essential in order to obtain accurate results
during the analysis of distributed systems [5].

In Sec. 5 we show how our results complement previous
literature on probabilistic distributed systems and schedul-
ing.

Contributions. In this paper, we address the nondeter-
minism concerning the different interleavings in which enti-
ties perform their actions. We present a scheduling mecha-
nism based on the rate function for PIOA.

Clearly, our framework allows to model some systems that
cannot be modelled using the framework in [12]. We show
that the model checking problem is undecidable when rates
are unspecified. Moreover, the worst-case probability with
which a set of states is reached cannot be even approxi-
mated. However, we present an algorithm to obtain an
over-estimation of this worst-case probability. This algo-
rithm works by translating the PIOA under consideration to
a Markov decision process (MDP). Our algorithm has an in-
tuitive explanation, and we explain why the over-estimation
obtained with our algorithm is more realistic than the prob-
ability obtained by modelling the system directly as an MDP
and applying the standard model checking algorithm in [1].
This improvement is related to the fact that, for distributed
systems, the algorithm in [1] yields unrealistic probabilities,
since MDPs assume total knowledge, while entities in dis-
tributed systems have access only to local information [5]. In
order to illustrate the advantages of our algorithm against
traditional model checking for MDPs, we present the re-
sults we obtained during the analysis of a simple protocol
for anonymous fair service.

2. PROBABILISTIC I/O AUTOMATA
We present the PIOA framework in terms of reactive and

generative structures [6], thus resembling the switched PIOA
in [2] (see Sec. 5 for a detailed comparison). However, our
framework is equivalent to the original PIOA in [12] –except
for the facts that rates are not specified and the amount of
states is finite– having no internal nondeterminism. For a
finite set S, we denote by Dist(S) the set of all probability

582

A reactive structure with two transitionsA generative structure with two transitions

1/2

1/2

1/2

1/2

a?

2/3

1/3

a!

1/3

2/3

a! b?

b! b!

Figure 1: Reactive and generative structures

distributions over the set S. Given a set Act of action la-
bels and a set S of states, the set of generative transitions
TG on (S, Act) is Dist(S×Act), and the set TR of reactive
transitions is Dist(S). A generative structure on (S, Act) is a
function G : S → P(TG) and a reactive structure on (S, Act)
is a function R : S×Act → P(TR). Figure 1 depicts an
example of these structures. Generative transitions model
both communication and state change. The component ex-
ecuting a generative transition chooses both a label a to
output (the ! indicates that the label is output) and a new
state s according to a given distribution. Reactive transi-
tions specify how a component reacts to a given input (the
? represents input). Since the input is not chosen, reactive
transitions are simply distributions on states.

We consider systems obtained by composing several prob-
abilistic I/O atoms. Each atom is a probabilistic I/O au-
tomaton having reactive and generative transitions. Since
we are not interested in internal nondeterminism, we restrict
to deterministic structures. A generative (reactive, resp.)
structure is said to be deterministic iff, for all s and a it
holds |G(s)| ≤ 1 (or |R(s, a)| ≤ 1, resp.) Because of this re-
striction, we often use G(s) to denote the sole element in the
set G(s) (provided that there is one) and R(s, a) to denote
the sole element in the set R(s, a).

Definition 1. A probabilistic I/O atom is a 5-tuple (S, Act,
G, R, init), where S is a finite set of states, Act is a finite set
of actions labels, and G (R, resp.) is a determistic generative
(reactive, resp.) structure on (S, Act). init ∈ S is the initial
state. As in [12], we require the atoms to be input-enabled,
so R(s, a) 6= ∅ for every s ∈ S, a ∈ Act (note that there is a
set Act for each atom). We often write Si to denote the set
of states of an atom Ai and similarly for the other elements
of the 5-tuple. In addition, we write TGi

(TRi
, resp.) for the

set of generative (reactive, resp.) transitions on (Si, Acti).

We define an interleaved probabilistic I/O system P as a
set Atoms(P) of probabilistic I/O atoms A1, · · · , AN . The
set of states of the system is

Q

i Si, and the initial state of
the system is init = (init1, · · · , initN).

In order to define how the system evolves, we define com-
pound transitions, which are the transitions performed by
the system as a whole. In such compound transitions, all
the atoms having the same action label in their alphabet
must synchronize and exactly one of them must partici-
pate with an output (generative) transition (thus modelling
multicasting). Formally, a compound transition is a tuple
(gi, a, rj1 , · · · , rjm) (we require i 6= jk and jk 6= jk′ for all
k 6= k′) where gi is a generative transition in the atom Ai

(the active atom), a ∈ Acti is an action label, the rjk
are

reactive transitions in the atoms Ajk
(the reactive atoms)

and {Ai, Aj1 , · · · , Ajm} is the set of all the atoms Aj such
that a ∈ Actj . We say that Ai, Aj1 , . . . , Ajm are the atoms
involved in the compound transition. A compound tran-
sition c = (gi, a, rj1 , · · · , rjm) is enabled in a given state
(s1, · · · , sN) if gi = Gi(si) and rjk

= Rjk
(sjk

, a). The ac-
tion label a in c is indicated by label(c). The atom Ai that

performs the output is indicated as outAtom(c). Note that,
since we restrict to deterministic structures, for all s, i, a
there is at most one c such that outAtom(c) = Ai, and
label(c) = a, and c is enabled in s. The (sub)probability
c(s, s′) of reaching s′ = (s′1, · · · , s′N) from s = (s1, · · · , sN)
using c = (gi, a, rj1 , · · · , rjm) is gi(s

′
i, a) ·

Qm

k=1 rjk
(s′jk

) if
st = s′t for every atom not involved in the transition. Oth-
erwise, c(s, s′) = 0.

So, for all A we have
P

{c|outAtom(c)=A}

P

s c(s, s′) = 1.

In order to ease some definitions, we introduce a fictitious
“stutter” compound transition ς. Intuitively, this transition
is executed iff the system has reached a state in which no
atom is able to generate a transition. The probability ς(s, s′)
of reaching s′ from s using ς is 1, if s = s′, or 0, otherwise.

A path σ of P is a sequence s1.c1.s2.c2 · · · cn−1.sn where
each si is a (compound) state and each ci is a compound
transition such that ci is enabled in si and c(si, si+1) > 0.
A path can be finite or infinite. For a finite path σ as before,
the set of extensions (denoted by [σ]) contains all the infinite
paths starting with σ. We define last(σ) = sn and len(σ) =
n.

In [12], the authors propose a mechanism that resolves
the interleaving choices for PIOA in a distributed fashion:
a rate rt(s) is assigned to each state s in each entity. Using
such rate, the choice among all the entities that are able to
perform an action is transformed into a probabilistic choice
as follows: when an entity arrives in state s, it draws a ran-
dom delay time from an exponential distribution with pa-
rameter rt(s) (i.e. an exponential distribution whose mean
is 1/rt(s)). This time describes the length of time the en-
tity will remain in state s before executing an action. So,
the entity having the least amount of delay time left is the
next one to perform an action. In [12] it is explained that,
according to this interpretation of the rate, a definite prob-
ability can be assigned to the event in which a given entity
is the next one to perform an action in a given state. If
each entity i is in state si, the probability that j is the next
entity to perform an action is rt(sj)

‹
P

i rt(si). The same
mechanism is used also in [10, 8, 11, 9]. As a simple exam-
ple, if entity E1 (E2, resp.) is in state s1 (s2, resp.) and
rt(s1) = 1 and rt(s2) = 2, the probability that E1 executes
first is 1/(1 + 2) while the probability that E2 executes first
is 2/(1 + 2). Note that the rate of s2 is twice the rate of s1,
and this is reflected in the probabilities. In general, the rate
can be seen as a “likeliness factor” that indicates how likely
is an entity to execute with respect to another.

This mechanism is useful in case we know the rate for
each state. However, in a fully nondeterministic setting, it
may be impossible to know in advance how much time an
entity will delay in a certain state. Moreover, the delayed
amount may vary during the execution of the system, and
so the rate should be a function of the whole execution of
the system upto the actual state, and not only a function of
the actual state.

So, we consider rate schedulers for each atom. Rate sched-
ulers choose a rate for every possible path in each atom. We
want the rates for each atom to depend solely on the infor-
mation available to that atom (this restriction will be shown
useful later, when comparing PIOA over MDPs). Such in-
formation is modelled by the projection of a path over an
atom.

Given a path σ, the projection σ[i] of the path σ over an
atom Ai is defined inductively as follows: (1) init[i] = initi ,

583

(2) σ.c.s[i] = σ[i] if Ai is not involved in c, and (3) σ.c.s[i] =
σ[i] .label(c).πi(s) (where πi denotes the i-th projection of
a tuple) otherwise. The set of all the projections of paths
over an atom Ai is denoted by Proji(P). We say that these
projections are the local paths of Ai.

A rate scheduler for Ai is a function rti : Proji(P) → R≥0
1

such that rti(σi) = 0 iff G(last(σi)) = ∅. A rate scheduler η
for a PIOA composed of several atoms {Ai}

N
i=1 is a set of rate

schedulers {rti}
N
i=1, where each rti is a rate scheduler for the

atom Ai. Using such schedulers, we can define probabilities
for the extension sets.

Definition 2. Given a scheduler η = {rti}
N
i=1, the prob-

ability Prη([init]) of the extensions of the initial state is 1.
If there exists i s.t. Gi(last(σ)) 6= ∅, then the probability
Prη([σ.c.s]) is

Prη([σ]) ·
rtoutAtom(c)(σ[outAtom(c)])

P

j rtj(σ[j])
· c(last(σ), s) .

If there is no such i, then the system cannot generate any
transition. In this case, we let Prη([σ.c.s]) = Prη([σ]) if
c = ς and s = last(σ), or 0 otherwise.

Using the assumption that the structures are deterministic,

we have
P

c,s′
rtoutAtom(c)(σ[outAtom(c)])

P

j rtj(σ[j])
· c(last(σ), s′) = 1. This

probability can be extended to the least σ-field containing
all the sets of extensions in the standard way. We say that
the sets in such σ-field are measurable. Given a measur-
able set S, we are interested in the value supη Prη(S). By
calculating this amount it can be answered, for instance,
whether or not “the probability of a package loss is at most
0.05”. This property, in particular, is what we call a reacha-
bility property : we are interested in the set of paths in which
some states are reached (namely, the states in which a pack-
age has been lost). Given a set U of states, we denote by
Prη(reach(U)) the probability of reaching any state in U .

3. VERIFYING PIOA
Unfortunately, the model checking problem is undecidable

for PIOA with unknown rate parameters. In fact, the worst-
case probability that a set of states is reached cannot be even
approximated with arbitrary precision.

Theorem 1. Given a PIOA P , a set U of states, and ε > 0,
there is no algorithm to compute r such that

˛

˛

˛

˛

sup
η

Prη(reach(U)) − r

˛

˛

˛

˛

≤ ε .

However, we found an algorithm whose result is a non-
trivial over-estimation of the amount supη Prη(reach(U)) (or
an under-estimation of infη Prη(reach(U))). For instance, if
the algorithm over-estimates the value of supη Prη(reach(U))
as 0.2, it may be the case that the supremum is actually 0.1
(but it cannot be the case that it is 0.3). So, if 0.2 is an ac-
ceptable probability, we have automatically proven that the
system under consideration is correct. It is important to
note that, because of the way in which the algorithm works,

1All of our results are also valid if the range of the schedulers
(and/or the range of the generative/reactive structures) is
the set of rational numbers.

there are many systems in which this over-estimation is ac-
tually better than the value obtained using MDPs with om-
niscient schedulers as in [1]. In fact, our algorithm is able to
find realistic worst-case probabilities when analysing a pro-
tocol for anonymous fair service, as we explain in Sec. 4. We
explain how our algorithm works using the following exam-
ple.

Suppose that ABC Corp. is planning two meetings. Each
member of ABC Corp. must assist to exactly one of these
meetings. ABC Corp. has a business and a technical divi-
sion has two divisions. The aim of ABC Corp. is to foster
collaboration among people belonging to different divisions.
They plan to assign a meeting to each member using a com-
puter program. Such program randomly selects one of the
meetings (with probability 1/2 each) without showing the
selection. Each member of ABC Corp. is required to use
the program during the course of the week, in order to know
the meeting which he/she is assigned to. When a member
asks the program, the program assigns to this member the
meeting previously selected. Then, the program randomly
selects another meeting to be assigned to the next member.

We would like the members in each meeting to be well-
balanced with respect to the division they belong to. Sup-
pose that a member of ABC Corp. decides to check the
probability that all members of the technical division are
assigned to the same meeting by analysing all possible or-
derings for the members of ABC Corp. Then, he discovers
that, if the members ask the program in order m1, · · · , mN

(where N is the total number of members) then the mem-
ber mi is assigned with probability 1/2 to each meeting, for
all i. So, the probability that all members of the technical
division are assigned to the same meeting is 1/2NT for all
cases, where NT is the number of members of the technical
division. Roughly speaking, the order is selected beforehand
and the system is verified by assuming that the atoms ex-
ecute in the selected order. This analysis must be carried
out for every possible order.

Using this idea, we explain how to translate PIOA to
MDPs. An MDP is a tuple M = (S, Tran, P, init), where
S is a finite set of states, Tran is a finite set of transition
names, P : (S×Tran× S) → [0, 1] is the (three-dimensional)
probability matrix, init ∈ S is the initial state. Tran(s) de-
notes the set of transitions enabled in state s, i.e. the set
of transitions α ∈ Tran such that P (s, α, t) > 0 for some
t ∈ S. For every state s ∈ S, we require that Tran(s) 6= ∅
and

P

s′∈S
P(s, α, s′) = 1 for every transition α ∈ Tran(s). A

path is a sequence s1.α1. · · · .sn. A scheduler η for an MDP
is a function mapping paths to transitions. The probability
of a path s1. · · · .sn is

Qn−1
i=1 P(si, η(s1. · · · .si), si+1). So, the

scheduler resolves the nondeterministic choice among all the
enabled transitions.

In the following, we show how to construct an MDP M
from a given PIOA P . The MDP M starts with a nonde-
terministic choice. This choice selects a total order on the
atoms having enabled generative transitions in the their ini-
tial state. (In general, for any state s, we call these atoms
the enabled atoms –denoted by enAtoms(s)). The interpre-
tation of such order is that the atoms will perform outputs
according to it. After this first choice has been performed,
M has several available transitions. All of these transitions
execute the generative structure corresponding to the atom
on the top of the order, but, in addition, each transition de-
termines how the atoms are ordered after the transition has

584

been executed. If the order prior to the execution is o1, then
the new order o2 must comply Ai <o1 Aj =⇒ Ai <o2 Aj

for all Ai, Aj such that the label l output by the generative
transition is neither in Acti nor in Act j. That is, the order
of atoms that are not aware of l does not change. By repeat-
ing this mechanism, M picks the maximum atom (according
to the actual order) and reorders the atoms. Note that the
restriction on the reordering ensures that, if at some point
of the execution it holds that Ai <o Aj , then Aj will not
execute after Ai unless Ai or Aj get new information.

In general, the decision of whether Ai executes before Aj

is taken right after the last step in which Ai or Aj receives
information. So, this choice cannot depend on subsequent
probabilistic choices and, as a consequence, there are sys-
tems for which our algorithm calculates realistic probabili-
ties. We offer an example of such systems in Sec. 4.

Let OP be the set comprising all total orders on subsets
of Atoms(P). Moreover, given S ⊆ Atoms(P), let O(S) be
the set comprising all total orders on S. Given an order o, a
reordering function for o is a function ro : Act×

Q

i Si → OP

such that: (1) ro(a, s) ∈ O(enAtoms(s)) and (2) (Ai <o

Aj ∧ a 6∈ Acti ∧ a 6∈ Actj) =⇒ ∀s . Ai <ro(a,s) Aj . Let Ro

denote all the reordering functions for o.
Given an interleaved PIOA P we construct an MDP M

as follows. Since MDPs have no concept of action labels, we
encode the last action label as part of the state. In addi-
tion, the current order on the enabled atoms is also part of
the states. The set of states of M is S = ((Act∪{aInit}) ×
(
Q

i Si)×OP) ∪ {initM}, where aInit is a fictitious label in-
troduced because the initial state of P has no previous label,
and initM is the initial state of M . Tran(initM) = {tinitM ,o |
o∈O(enAtoms(initP))}, with P(initM , tinitM ,o, (aInit, initP , o))
= 1. For the remaining states, Tran((a, s, o)) = {ts,o,ro |
ro ∈ Ro}, where ts,o,ro is defined as follows. Given a state
s = 〈sj〉j , an enabled atom i and a label a′, let cs,i,a′ be the
compound transition (Gi(si), a

′, 〈Rj(sj , a
′)〉j|a′∈Actj

) (for Gi

and Rj , see Def. 1). Then, P((a, s, o), ts,o,ro , (a′, s′, o′)) =
cs,max<o Ai,a′(s, s′) if ro(a

′, s′) = o′. Otherwise, P((a, s, o),

ts,o′,r, (a
′, s′, o′′)) = 0. For the states in which enAtoms(s) =

∅, we define Tran(s) = {tς} with P(s, tς , s) = 1.
Our algorithm simply translates the PIOA P to an MDP

M as explained above and applies the algorithm in [1]. Given
a set of states of the PIOA U , let M(U) denote the set of
states of M defined as M(U) = {(a, s, o) | s ∈ U}. The
soundness of our algorithm is stated in the following theo-
rem.

Theorem 2. Given a PIOA P , let M be the MDP con-
structed as explained above. Then,

supη Prη
P (reach(U)) ≤ supη Prη

M (reach(M(U)))
and infη Prη

M (reach(M(U))) ≤ infη Prη
P (reach(U)) .

If we model a system using PIOA and apply our algorithm,
instead of modelling the system with the obvious MDP, we
may obtain a more realistic verification of the system. As
an example, the system of ABC Corp. can also be modelled
using MDPs. In this case, the choice of the next member
to ask the program needs to be resolved by the scheduler.
Since schedulers for MDPs are able to look at the whole
history of the system (and not only at the projections), the
scheduler may choose a member according to the hidden
outcome of the probabilistic choice, and then there exists a
scheduler that assigns all members of the technical division

to the same party with probability 1 2. Note that the naive
analysis for the system of ABC Corp. (in which all the
orders on members are considered) is valid if all the possible
cases to consider are all the orders on the set of members.
Such set of cases, in turn, does not rule out realistic cases iff
we assume that the order on the members is not a function
of the secret random choices, which is exactly what we want.

4. ANALYSING A PROTOCOL
We used our algorithm to analyse a simple protocol for

anonymous fair service. A server must serve two clients in
a fair fashion regardless of the rates at which they ask for
service. In addition, the clients cannot be identified, so the
server cannot simply count how many times it has served
each of the clients. A rough sketch of the protocol is the fol-
lowing: the server keeps track of the order in which requests
were received. At most two requests may be pending, since
we assume that clients cannot perform requests while wait-
ing 3. So, once two requests were received, a coin is tossed in
order to decide which of the requests is replied: in case the
coin lands heads, the first request is replied. Otherwise, the
server replies the second request. Then, the coin is tossed
again.

Different results may be obtained by changing what the
server does in case a client is waiting while the other one is
being served. In this case, the server may serve the client
that is waiting (instead of tossing the coin again) once the
service for the current one has finished. By avoiding the coin
toss, the server increases its throughput, but our analysis
shows that the fairness of the service may result affected.
For brevity, we name the protocol that tosses a new coin as
AFS1, and the protocol that serves the waiting process as
AFS2.

We modelled the system as a PIOA. The corresponding
MDP was constructed by hand. Since this construction is
an error-prone task, we performed several consistence veri-
fications on the MDP obtained. All of the verifications were
carried out using the PRISM [7] model checker.

Since we focus on reachability properties (and we are still
not able to verify long-run properties), we specify the system
so that it stops after one of the clients is served 20 times.
Then, we used PRISM to calculate the maximum probability
pm that, at any point of execution, the amount n1 of replies
to client 1 is greater than or equal to n2 + m, where n2 is
the amount of replies to client 2 and m is a parameter of
the property.

By ignoring the input/output restrictions, the original
PIOA can be seen as an MDP. In our case, such MDP is
a natural model of the system. Figure 2 compares the prob-
abilities pm for such MDPs against the probabilities for AFS1

and AFS2 over-estimated using our technique.
From the figure, it is clear that AFS1 ensures a fair service

with greater probability than that of AFS2 (according to our
analysis). In addition, the results for the MDP obtained

2In [5], a similar example is used to explain why it is unre-
alistic to assume that a single omniscient scheduler resolves
the choices of all the entities. The same kind of unrealistic
behaviours (in which the hidden state of an entity affects
the behaviour of another entity) are also used to illustrate
the lack of compositionality properties [2, Cpt. 8].
3Otherwise, it is impossible to guarantee fairness, since one
of the entities may perform requests at an arbitrarily high
rate.

585

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦

◦

◦
◦ ◦ ◦ ◦

MDP1

• • • • • • • • • • • •

•

•

•

•
• • • •

MDP2

∗

∗

∗

∗

∗

∗
∗

∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

AFS1

� � � � � �
�

�

�

�

�

�

�
�

� � � � � �

AFS2

5 10 15 20

0

0.2

0.4

0.6

0.8

1

m

pm

Figure 2: Results of the analysis

by ignoring the input/output restrictions of the PIOA are
excessively pessimistic. Note that, for m = 10, the worst-
case for AFS1 using the translated PIOA yields a probability
of 0.07, while using the MDP model the probability is 0.99.
Although the results for AFS2 are not as encouraging as
the results for AFS1, they are still notably better than the
results for the MDPs.

5. RELATED AND FUTURE WORK
In recent literature on distributed systems [4, 5, 2], in-

ternal nondeterminism is considered. That is, an entity
may have many probabilistic transitions enabled, and so the
scheduler must choose also among these transitions. These
works also point out that there are schedulers that do not
represent realistic behaviours. As a consequence, some ac-
ceptable systems are deemed incorrect by model checking al-
gorithms, because these algorithms find unacceptable prob-
abilities yielded by unrealistic schedulers. When we see the
execution of an MDP as a game, these unrealistic schedulers
arise from the fact that the scheduler is an adversary looking
at the whole state of the system, although in the real system
the choices in each entity depend only on the information
available to the entity. So, a more realistic verification of
such distributed systems can be attempted by considering
distributed schedulers. In this approach, local schedulers are
defined for each entity. These schedulers act as adversaries
that are able to see the complete execution history of their
respective entity, and then choose a transition for this entity.
A distributed scheduler is then obtained as a composition of
the local schedulers.

Although the existing approaches related to distributed
schedulers tackle the problem related to the choices of each
entity, the choice of the next entity to perform an action
is not resolved by schedulers. In other words, local sched-
ulers choose what their respective entity will do, but there
is no scheduler to choose the next entity. In [3], the entities
are not specified explicitly (then, there are no interleaving
issues) and the schedulers are restricted by imposing the
condition that they must observe only a portion of each
state in the history. The framework in [4, 5] allows to model
completely synchronous systems: a step of the whole sys-
tem is obtained by taking a step in every entity (thus, no
interleaving is needed). In the framework presented in [2]
the different entities have local schedulers to resolve internal
nondeterminism, and a token is used in order to decide the
next entity to perform an action. The interleaving among
different entities is not resolved by the schedulers, since the
way in which the token is passed is part of the specifica-
tion. Note that, because of the internal nondeterminism, the
choice of the next entity to execute is still nondeterministic,
since there may be different transitions passing the token to
different entities. However, since internal nondeterminism

is resolved according to the local history, the choice of the
next entity to execute is based on the history of the entity
that passes the token. In [2] it is suggested that a fictitious
arbiter entity can be added in order to specify interleav-
ing policies. The entities pass the token to the arbiter and
the arbiter selects one of the entities to which the token is
passed. So, the information used to choose the next en-
tity can be restricted simply by restricting the information
available to the arbiter. Although this approach is useful in
order to keep some information hidden, such approach can-
not be used to simulate the rate schedulers we present. In
our restriction, the lack of information depends on the set of
entities considered, and there is no information completely
hidden.

In the future, we plan to extend the verification to other
properties, as well as to develop a program to automatically
translate PIOA to MDPs.

6. REFERENCES
[1] A. Bianco and L. de Alfaro. Model checking of

probabilistic and nondeterministic systems. In
FSTTCS ’95, pages 288–299. Springer, 1995.

[2] L. Cheung. Reconciling Nondeterministic and
Probabilistic Choices. PhD thesis, Radboud
Universiteit Nijmegen, 2006.

[3] L. de Alfaro. The verification of probabilistic systems
under memoryless partial-information policies is hard.
In Proc. of PROBMIV 99. Technical Report CSR-99-8,
pages 19–32. University of Birmingham, 1999.

[4] L. de Alfaro, T. A. Henzinger, and R. Jhala.
Compositional methods for probabilistic systems. In
CONCUR 01, pages 351–365. Springer, 2001.

[5] S. Giro and P. R. D’Argenio. Quantitative model
checking revisited: neither decidable nor
approximable. In FORMATS ’07, pages 179–194.
Springer, 2007.

[6] R. v. Glabbeek, S. Smolka, and B. Steffen. Reactive,
generative, and stratified models of probabilistic
processes. Inf. & Comp., 121:59–80, 1995.

[7] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic verification
of probabilistic systems. In Proc. of TACAS ’06, pages
441–444. Springer, 2006.

[8] E. Stark and G. Pemmasani. Implementation of a
compositional performance analysis algorithm for
probabilistic I/O automata. In Proc. of PAPM ’99,
pages 3–24. Prensas Universitarias de Zaragoza, 1999.

[9] E. W. Stark. On behaviour equivalence for
probabilistic I/O automata and its relationship to
probabilistic bisimulation. J. Autom. Lang. Comb.,
8(2):361–395, 2003.

[10] E. W. Stark, R. Cleaveland, and S. A. Smolka. A
process-algebraic language for probabilistic I/O
automata. In R. M. Amadio and D. Lugiez, editors,
CONCUR ’03, pages 189–203. Springer-Verlag, 2003.

[11] E. W. Stark and S. Smolka. Compositional analysis of
expected delays in networks of probabilistic I/O
automata. In LICS 98, pages 466–477. IEEE CS
Press, 1998.

[12] S.-H. Wu, S. A. Smolka, and E. W. Stark.
Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci., 176(1-2):1–38, 1997.

586

